हिंदी

In the Given Figure, O is the Center of the Circle and the Length of Arc Ab is Twice the Length of Arc Bc. If ∠Aob = 100°, Find: (I) ∠Boc (Ii) ∠Oac - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, O is the center of the circle and the length of arc AB is twice the length of arc BC. If ∠AOB = 100°,
find: (i) ∠BOC (ii) ∠OAC

योग

उत्तर

We know that when two arcs are in ratio 2: 1 then the subtended by them is also in ratio 2: 1
As given arc AB is twice the length of arc BC.
Therefore, arc AB: arc BC = 2: 1
Hence, ∠AOB: ∠BOC = 2: 1

Now given that ∠AOB = 100°.
So, ∠BOC = `1/2∠"AOB" = 1/2 xx 100° = 50°`

Now, ∠AOC = ∠AOB + ∠BOC = 100° + 50° = 150°.
The triangle thus formed, ∠AOC is an isosceles triangle with OA = OC as they are radii of the same circle.
Thus,
∠OAC = ∠OCA as they are opposite angles of equal sides of an isosceles triangle.
The sum of all the angles of a triangle is 180°.
So, ∠COA + ∠OAC + ∠OCA = 180°
2∠OAC + 150° = 180° as, ∠OAC = ∠OCA 
2∠OAC = 180° - 150°
2∠OAC = 30°
∠OAC = 15°
as ∠OCA = ∠OAC So,
∠OCA = ∠OAC = 15°.

shaalaa.com
Arc and Chord Properties - If Two Arcs Subtend Equal Angles at the Center, They Are Equal, and Its Converse
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Circle - Exercise 17 (C) [पृष्ठ २२१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 17 Circle
Exercise 17 (C) | Q 8 | पृष्ठ २२१

संबंधित प्रश्न

Two chords AB and CD intersect at P inside the circle. Prove that the sum of the angles subtended by the arcs AC and BD at the centre O is equal to twice the angle APC.


In the given figure, ABC is a triangle in which ∠BAC = 30°. Show that BC is equal to the radius of the circumcircle of the triangle ABC, whose centre is O.


The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle PRT = 20° and angle POQ = 100°. Calculate:

  1. angle QTR
  2. angle QRP
  3. angle QRS
  4. angle STR


The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle PRT = 20° and angle POQ = 100°. Calculate:

(ii) angle QRP


The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle PRT = 20° and angle POQ = 100°. Calculate:

(iii) angle QRS

 


In the given figure, an equilateral triangle ABC is inscribed in a circle with center O.
Find: (i) ∠BOC
(ii) ∠OBC


In the given figure, AB is a side of a regular hexagon and AC is a side of a regular eight-sided polygon.
Find:
(i) ∠AOB
(ii) ∠AOC
(iii) ∠BOC 
(iv) ∠OBC


In the given figure, a square is inscribed in a circle with center O. Find:

  1. ∠BOC
  2. ∠OCB
  3. ∠COD
  4. ∠BOD

Is BD a diameter of the circle?


In the given figure, the lengths of arcs AB and BC are in the ratio 3:2. If ∠AOB = 96°, find: 

  1. ∠BOC
  2. ∠ABC


C is a point on the minor arc AB of the circle, with centre O. Given ∠ACB = p°, ∠AOB = q°.
(i) Express q in terms of p.
(ii) Calculate p if ACBO is a parallelogram. 
(iii) If ACBO is a parallelogram, then find the value of q + p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×