हिंदी

In the Given Figure, an Equilateral Triangle Abc is Inscribed in a Circle with Center O. Find: ∠Boc ∠Obc - Mathematics

Advertisements
Advertisements

प्रश्न

In the given figure, an equilateral triangle ABC is inscribed in a circle with center O.
Find: (i) ∠BOC
(ii) ∠OBC

योग

उत्तर

In the given figure, ABC is an equilateral triangle.

Hence all the three angles of the triangle will be equal to 60°
i.e. ∠A = ∠B = ∠C = 60°

As the triangle is an equilateral triangle, BO and CO will be the angle bisectors of B and C respectively.

Hence ∠OBC = `"∠ABC"/2` 
                     = 30°
and as given in the figure we can see that OB and OC are the radii of the given circle.
Hence they are of equal length.

The ΔOBC is an isosceles triangle with OB = OC
In ΔOBC,
∠OBC = ∠OCB as they are angles opposite to the two equal sides of an isosceles triangle.
Hence, ∠OBC = 30° and ∠OCB = 30°
Since the sum of all angles of  a triangle is 180°

Hence in triangle OBC, ∠OCB + ∠OBC + ∠BOC + BOC = 180°
30° + 30° + ∠BOC= 180°
60° + BOC = 180°
∠BOC = 180° - 60°
∠BOC = 120°
Hence ∠BOC =120° and ∠OBC =30°

shaalaa.com
Arc and Chord Properties - If Two Arcs Subtend Equal Angles at the Center, They Are Equal, and Its Converse
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Circle - Exercise 17 (C) [पृष्ठ २२०]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 17 Circle
Exercise 17 (C) | Q 1 | पृष्ठ २२०

संबंधित प्रश्न

In the figure given alongside, AB and CD are straight lines through the centre O of a circle. If ∠AOC = 80° and ∠CDE = 40°, find the number of degrees in:

  1. ∠DCE,
  2. ∠ABC.


In the given figure, AB = AC = CD and ∠ADC = 38°. Calculate :

  1. Angle ABC
  2. Angle BEC


The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle PRT = 20° and angle POQ = 100°. Calculate:

  1. angle QTR
  2. angle QRP
  3. angle QRS
  4. angle STR


The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle PRT = 20° and angle POQ = 100°. Calculate:

(ii) angle QRP


The given figure shows a circle with centre O such that chord RS is parallel to chord QT, angle PRT = 20° and angle POQ = 100°. Calculate: 

(iv) angle STR


In the given figure, O is the center of the circle and the length of arc AB is twice the length of arc BC. If ∠AOB = 100°,
find: (i) ∠BOC (ii) ∠OAC


In the given figure, AB is a side of a regular hexagon and AC is a side of a regular eight-sided polygon.
Find:
(i) ∠AOB
(ii) ∠AOC
(iii) ∠BOC 
(iv) ∠OBC


In the given figure, AB = BC = DC and ∠AOB = 50°.
(i) ∠AOC
(ii) ∠AOD
(iii) ∠BOD
(iv) ∠OAC
(v) ∠ODA


In the given figure, arc AB and arc BC are equal in length. If ∠AOB = 48°, find:
(i) ∠BOC
(ii) ∠OBC
(iii) ∠AOC
(iv) ∠OAC


C is a point on the minor arc AB of the circle, with centre O. Given ∠ACB = p°, ∠AOB = q°.
(i) Express q in terms of p.
(ii) Calculate p if ACBO is a parallelogram. 
(iii) If ACBO is a parallelogram, then find the value of q + p.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×