Advertisements
Advertisements
प्रश्न
In the integral `int("d"x)/((2"a"x-x^2)^(1/2)) = "a"^"n" sin^-1 (x/"a"-1)`, the value of n should be ______.
विकल्प
1
-1
0
`1/2`
MCQ
उत्तर
In the integral `int("d"x)/((2"a"x-x^2)^(1/2)) = "a"^"n" sin^-1 (x/"a"-1)`, the value of n should be 0.
Explanation:
`int("d"x)/((2"a"x-x^2)^(1/2)) = "a"^"n" sin^-1 (x/"a"-1)`
From R.H.S. dimension of [a] = [L],
Since `[x/"a"]` should be dimensionless,
Dimension L.H.S.: `["L"]/["L"]` = L°
Since dimension of [2ax – x2]1/2 = [L]
and dimension of [dx] = L
Equating dimensions of L.H.S. and R.H.S.
L° = Ln
n = 0
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?