Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`sqrt(1 - sin 2x)`
उत्तर
`sqrt(1 - sin 2x) = sqrt(1 - 2sinx cos x)`
= `sqrt(sin^2x + cos^2x - 2sinx cosx)`
= `sqrt((cosx - sin x)^2`
= `cos x - sin x`
So `int sqrt(1 - sin 2x) "d"x = int cos x "d"x - int sin x + "c"`
= `sin x - (- cos x) + "c"`
= `sin x+ cosx + "c"`
`sqrt(sin^2x + cos^2x - 2sinx cosx) = sqrt((sinx - cosx)^2)`
= `sin x - cos x`
So `int sqrt(1 - sin^2x) "d"x = int sin x "d"x - int cos x "d"x + "c"`
= `- cos x - sinx + "c"`
= `- (cos x + sin x) + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`(3x^2 - 2x + 5)/((x - 1)(x^2 + 5))`
Integrate the following with respect to x.
sin3x
Integrate the following with respect to x.
`1/(sin^2x cos^2x) ["Hint:" sin^2x + cos^2x = 1]`
Integrate the following with respect to x.
`("e"^(3logx))/(x^4 + 1)`
Choose the correct alternative:
`int (sin2x)/(2sinx) "d"x` is
Choose the correct alternative:
`int[9/(x - 3) - 1/(x + 1)] "d"x` is
Choose the correct alternative:
`int (2x^3)/(4 + x^4) "d"x` is
Choose the correct alternative:
`int_0^1 sqrt(x^4 (1 - x)^2) "d"x` is
Choose the correct alternative:
`int_0^(pi/3) tan x "d"x` is
Evaluate the following integral:
`int ("d"x)/(2 - 3x - 2x^2)`