Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`sqrt(1 - sin 2x)`
उत्तर
`sqrt(1 - sin 2x) = sqrt(1 - 2sinx cos x)`
= `sqrt(sin^2x + cos^2x - 2sinx cosx)`
= `sqrt((cosx - sin x)^2`
= `cos x - sin x`
So `int sqrt(1 - sin 2x) "d"x = int cos x "d"x - int sin x + "c"`
= `sin x - (- cos x) + "c"`
= `sin x+ cosx + "c"`
`sqrt(sin^2x + cos^2x - 2sinx cosx) = sqrt((sinx - cosx)^2)`
= `sin x - cos x`
So `int sqrt(1 - sin^2x) "d"x = int sin x "d"x - int cos x "d"x + "c"`
= `- cos x - sinx + "c"`
= `- (cos x + sin x) + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`(sqrt(2x) - 1/sqrt(2x))^2`
Integrate the following with respect to x.
`x^3/(x + 2)`
Integrate the following with respect to x.
sin3x
Integrate the following with respect to x.
`(log x)^3/x`
Integrate the following with respect to x.
`(6x + 7)/sqrt(3x^2 + 7x - 1)`
Integrate the following with respect to x.
`x/(2x^4 - 3x^2 - 2)`
Integrate the following with respect to x.
`"e"^x [1/x^2 - 2/x^3]`
Integrate the following with respect to x.
`sqrt(4x^2 - 5)`
Evaluate the following integral:
`int_0^1 sqrt(x(x - 1)) "d"x`
Evaluate the following integral:
`int_0^3 (x dx)/(sqrt(x + 1)+ sqrt(5x + 1))`