Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`x/(2x^4 - 3x^2 - 2)`
उत्तर
`x/(2x^4 - 3x^2 - 2) = x/((2x^2 + 1)(x^2 - 2))`
Let x2 = t
Then 2x dx = dt
So `int x/(2x^4 - 3x^2 - 2) = 1/2 int (2x "d"x)/((2x^2 + 1)(x^2 - 2))`
= `1/2 int "dt"/((2"t" + 1)("t" - 2))`
We make use of partial fraction method
Let `1/((2"t" + 1)("t" - 2)) = "A"/(2"t" + 1) + "B"/("t" - 2)`
1 = A(t − 2) + B(2t + 1)
Let t = 2, Then 1 = 5B
⇒ B = `1/5`
Let t = `- 1/2`,Then 1 = `(-5)/2`A
⇒ A = `(- 2)/5`
So `1/2 int "dt"/((2"t" + 1)("t" - 2)) = 1/2 int ((-2)/5)/(2"t"+ 1) "dt" + 1/2 int (1/5)/("t" - 2) "dt"`
= `(- log|2"t" + 1|)/(5(2)) + 1/10 log |"t" - 2| + "c"`
Putting t = x2, we get = `(- log|2x^2 + 1|)/10 + 1/10 log|x^2 - 2| + "c"`
= `1/10 log |(x^2 - 2)/(2x^2 + 1)| + "c"`
Using log (a) − log (b) = `log "a"/"b"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`(3x + 2)/((x - 2)(x - 3))`
Integrate the following with respect to x.
`("e"^x + 1)^2 "e"^x`
Integrate the following with respect to x.
`sqrt(1 - sin 2x)`
Integrate the following with respect to x.
`sqrt(2x^2 + 4x + 1)`
Integrate the following with respect to x.
`1/(x + sqrt(x^2 - 1)`
Choose the correct alternative:
`int logx/x "d"x, x > 0` is
Choose the correct alternative:
`int "e"^x/("e"^x + 1) "d"x` is
Choose the correct alternative:
`int[9/(x - 3) - 1/(x + 1)] "d"x` is
Choose the correct alternative:
`int (2x + 3)/sqrt(x^2 + 3x + 2) "d"x` is
Choose the correct alternative:
If `int_0^1 f(x) "d"x = 1, int_0^1 x f(x) "d"x = "a"`, and `int_0^1 x^2 f(x) "d"x = "a"^2`, then `int_0^1 ("a" - x)^2 f(x) "d"x` is