Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`(3x + 2)/((x - 2)(x - 3))`
उत्तर
We use partial fraction method to split the given function into two fractions and then integrate.
`(3 + 2)/((x - 2)(x - 3)) = "A"/(x - 2) + "B"/(x - 3)`
3x + 2 = A(x − 3) + B(x − 2)
Put (x = 3)
11 = B
⇒ B = 11
Put (x = 2)in the identify
39) + 2 = A(2 - 3)
8 = − A
⇒ A = − 8
So `(3x + 2)/((x - 2)(x - 3)) = (-8)/(x - 2) + 11/(x - 3)`
Thus `int (3x + 2)/((x - 2)(x - 3)) "d"x = 8 int ("d"x)/(x - 2) + 11 int ("d"x)/(x - 3) + "c"`
= `- 8 log |x - 2| + 11 log |x - 3| + "c"`
`int (3x + 2)/((x - 2)(x - 3)) "d"x 11 log |x - 3| - 8 log |x - 2| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`("a"^x - "e"^(xlog"b"))/("e"^(x log "a") "b"^x)`
Integrate the following with respect to x.
`"e"^(2x)/("e"^(2x) - 2)`
Integrate the following with respect to x.
`"e"^x [1/x^2 - 2/x^3]`
Integrate the following with respect to x.
`1/sqrt(9x^2 - 7)`
Choose the correct alternative:
`int 1/x^3 "d"x` is
Choose the correct alternative:
`int (sin5x - sinx)/(cos3x) "d"x` is
Choose the correct alternative:
`int "e"^(2x) [2x^2 + 2x] "d"x`
Choose the correct alternative:
`int "e"^x/("e"^x + 1) "d"x` is
Choose the correct alternative:
`int (2x + 3)/sqrt(x^2 + 3x + 2) "d"x` is
Integrate the following with respect to x.
`sqrtx (x^3 - 2x + 3)`