Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`(4x^2 + 2x + 6)/((x + 1)^2(x - 3))`
उत्तर
By partial fraction
`(4x^2 + 2x + 6)/((x +1)^2(x - 3)) = "A"/((x - 3)) + "B"/((x + 1)) + "C"/(x + 1)^2`
`(4x^2 + 2x + 6)/((x +1)^2(x - 3)) = ("A"(x + 1)^2 + "B"(x - 3)(x + 1) + "c"(x - 3))/((x - 3)(x + 1)^2`
⇒ 4x2 + 2x + 6 = A(x + 1)2 + B(x – 3)(x + 1) + C(x – 3)
Put x = 3
4(9) + 2(3) + 6 = A(4)2
36 + 6 + 6 = 16A
⇒ A = `48/16`
A = 3
Put x = – 1
4(1) + 2(– 1) + 6 = C(– 4)
4 – 2 + 6 = – 4C
⇒ – 4c = 8
C = – 2
Put x = 0
6 = A(1) + B(– 3) + C(– 3)
6 = 3(1) – 3B + (– 2)(– 3)
6 = 3 – 3B + 6
⇒ 3B = 3
B = 1
`(4x^2 + 2x + 6)/((x + 1)^2(x - 3)) = 3/((x - 3)) + 1/((x + 1)) - 2/(x + 1)^2`
`int (4x^2 + 2x + 6)/((x + 1)^2(x - 3)) "d"x = int [3/((x - 3)) + 1/((x + 1)) - 2(x + 1)^-2] "d"x`
= `3 log |x - 3| + log|x + 1| - 2 (x + 1)^(-2 + 1)/((-2 + 1)) + "C"`
= `3 log|x - 3| + log |x + 1| + 2/((x + 1)) + "C"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`(3x + 2)/((x - 2)(x - 3))`
Integrate the following with respect to x.
`x/(2x^4 - 3x^2 - 2)`
Integrate the following with respect to x.
`1/(9 - 16x^2)`
Integrate the following with respect to x.
`1/(9 - 8x - x^2)`
Integrate the following with respect to x.
`1/(2x^2 - 9)`
Integrate the following with respect to x.
`1/(x^2 + 3x + 2)`
Integrate the following with respect to x.
`x^3/sqrt(x^8 - 1)`
Choose the correct alternative:
`int sqrt("e"^x) "d"x` is
Choose the correct alternative:
`int_0^4 (sqrt(x) + 1/sqrt(x)) "d"x` is
Integrate the following with respect to x.
`sqrtx (x^3 - 2x + 3)`