Advertisements
Advertisements
Question
Integrate the following with respect to x.
`x/(2x^4 - 3x^2 - 2)`
Solution
`x/(2x^4 - 3x^2 - 2) = x/((2x^2 + 1)(x^2 - 2))`
Let x2 = t
Then 2x dx = dt
So `int x/(2x^4 - 3x^2 - 2) = 1/2 int (2x "d"x)/((2x^2 + 1)(x^2 - 2))`
= `1/2 int "dt"/((2"t" + 1)("t" - 2))`
We make use of partial fraction method
Let `1/((2"t" + 1)("t" - 2)) = "A"/(2"t" + 1) + "B"/("t" - 2)`
1 = A(t − 2) + B(2t + 1)
Let t = 2, Then 1 = 5B
⇒ B = `1/5`
Let t = `- 1/2`,Then 1 = `(-5)/2`A
⇒ A = `(- 2)/5`
So `1/2 int "dt"/((2"t" + 1)("t" - 2)) = 1/2 int ((-2)/5)/(2"t"+ 1) "dt" + 1/2 int (1/5)/("t" - 2) "dt"`
= `(- log|2"t" + 1|)/(5(2)) + 1/10 log |"t" - 2| + "c"`
Putting t = x2, we get = `(- log|2x^2 + 1|)/10 + 1/10 log|x^2 - 2| + "c"`
= `1/10 log |(x^2 - 2)/(2x^2 + 1)| + "c"`
Using log (a) − log (b) = `log "a"/"b"`
APPEARS IN
RELATED QUESTIONS
Integrate the following with respect to x.
(3 + x)(2 – 5x)
Integrate the following with respect to x.
`(3x^2 - 2x + 5)/((x - 1)(x^2 + 5))`
Integrate the following with respect to x.
`[1 - 1/2]"e"^((x + 1/x))`
Integrate the following with respect to x.
log x
Integrate the following with respect to x.
`1/(2x^2 + 6x - 8)`
Choose the correct alternative:
`int "e"^x/("e"^x + 1) "d"x` is
Choose the correct alternative:
`int[9/(x - 3) - 1/(x + 1)] "d"x` is
Evaluate the following integral:
`int ("d"x)/("e"^x + 6 + 5"e"^-x)`
Evaluate the following integral:
`int (x + 1)^2 log x "d"x`
Evaluate the following integral:
`int log (x - sqrt(x^2 - 1)) "d"x`