English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 12

Evaluate the following integral: d∫log(x-x2-1)dx - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integral:

`int log (x - sqrt(x^2 - 1)) "d"x`

Sum

Solution

Let u = `log(x - sqrt(x^2 - 1))`

du = `(1 - (2x)/(2sqrt(x^2 - 1)))/(x - sqrt(x^2 - 1))`

du = `(2sqrt(x^2 - 1) - 2x)/(2sqrt(x^2 - 1) (x - sqrt(x^2 - 1))`

du = `(-2(x - sqrt(x^2 - 1)))/(2sqrt(x^2 - 1)(x - sqrt(x^2 - 1))`

du = `(-1)/sqrt(x^2 - 1)`

So integral becomes

`xlog(x - sqrt(x^2 - 1)) + int x/sqrt(x^2 - 1)  "d"x = xlog(x - sqrt(x^2 - 1)) + 1/2 int (2x)/sqrt(x^2 - 1)  "d"x`

= `xlog(x - sqrt(x^2 - 1)) + 1/2 (x^2 - 1)^(1/2)/(1/2) + "c"`

= `xlog(x - sqrt(x^2 - 1)) + sqrt(x^2 - 1) + "c"`

shaalaa.com
Indefinite Integrals
  Is there an error in this question or solution?
Chapter 2: Integral Calculus – 1 - Miscellaneous problems [Page 55]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 12 TN Board
Chapter 2 Integral Calculus – 1
Miscellaneous problems | Q 7 | Page 55
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×