Advertisements
Advertisements
Question
Evaluate the following integral:
`int_(-1)^1 x^2 "e"^(-2x) "d"x`
Solution
`int_(-1)^1 x^2 "e"^(-2x) "d"x`
We use integration by parts
Let u = x2
Then du = 2x dx
Let dv = `"e"^(-2x) "d"x`
v = `"e"^(-2x)/(-2)`
= `[(x^2"e"^(-2x))/(-2)]_(-1)^1 - int_(-1)^1 (2x) "e"^(-2x)/(-2) "d"x`
= `"e"^(-2x)/(-2) - "e"^2/(-2) + int_(-1)^1 x"e"^(-2x) "d"x`
= `("e"^2 - "e"^(-2))/2 + [(x"e"^(-2x))/(-2)]_(-1)^1 - int_(-1)^1 "e"^(-2x)/(-2) "d"x`
We have used itegration by prts again
= `("e"^2 - "e"^(-2))/2 - "e"^(-2)/2 - "e"^2/2 + 1/2["e"^(-2x)/(-2)]_(-1)^1`
= `-"e"^(-2) + 1/2 ["e"^(-2)/(-2) + "e"^2/2]`
= `(-1)/"e"^2 - 1/(4"e"^2) + 1/4 "e"^2`
= `"e"^2/4 - 5/(4"e"^2)`
= `1/4 [("e"^4 - 5)/"e"^2]`
APPEARS IN
RELATED QUESTIONS
Integrate the following with respect to x.
`sqrt(3x + 5)`
Integrate the following with respect to x.
If f'(x) = `1/x` and f(1) = `pi/4`, then find f(x)
Integrate the following with respect to x.
`("e"^(3x) - "e"^(-3x))/"e"^x`
Integrate the following with respect to x.
If f'(x) = ex and f(0) = 2, then find f(x)
Integrate the following with respect to x.
x3e3x
Integrate the following with respect to x.
log x
Integrate the following with respect to x.
`(x^("e" - 1) + "e"^(x - 1))/(x^"e" + "e"^x)`
Integrate the following with respect to x.
`1/(2x^2 + 6x - 8)`
Integrate the following with respect to x.
`"e"^x/("e"^(2x) - 9)`
Choose the correct alternative:
`int_0^4 (sqrt(x) + 1/sqrt(x)) "d"x` is