Advertisements
Advertisements
Question
Integrate the following with respect to x.
`(x^("e" - 1) + "e"^(x - 1))/(x^"e" + "e"^x)`
Solution
`(x^("e" - 1) + "e"^(x - 1))/(x^"e" + "e"^x) = (x^("" 1) + "e"^x/"e")/(x^"e" + "e"^x)`
= `("e"x^("e" - 1) + "e"^x)/("e"(x^"e" + "e"^x))`
Let f(x) = xe + ex
Then f'(x) = `"e"x^("e" - 1) + "e"^x`
So `int (x^("e" - 1) + "e"^(x - 1))/(x^"e" + "e"^x) "d"x = int ("e"x^("e" - 1) + "e"^x)/("e"(x^"e" + "e"^x)) "d"x`
= `1/"e" int ("f'"(x))/("f"(x)) "d"x`
= `1/"e" log |"f"(x)| + "c"`
= `1/"e" log|x^"e" + "e"^x| + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate the following with respect to x.
(3 + x)(2 – 5x)
Integrate the following with respect to x.
If f'(x) = x + b, f(1) = 5 and f(2) = 13, then find f(x)
Integrate the following with respect to x.
`("a"^x - "e"^(xlog"b"))/("e"^(x log "a") "b"^x)`
Integrate the following with respect to x.
`("e"^(3x) - "e"^(-3x))/"e"^x`
Integrate the following with respect to x.
`(cos 2x + 2sin^2x)/(cos^2x)`
Integrate the following with respect to x.
`"e"^x/("e"^(2x) - 9)`
Integrate the following with respect to x.
`1/sqrt(x^2 - 3x + 2)`
Choose the correct alternative:
`int_0^4 (sqrt(x) + 1/sqrt(x)) "d"x` is
Evaluate the following integral:
`int ("d"x)/("e"^x + 6 + 5"e"^-x)`
Evaluate the following integral:
`int sqrt(2x^2 - 3) "d"x`