English
Tamil Nadu Board of Secondary EducationHSC Commerce Class 12

Evaluate the following integral: d∫2x2-3 dx - Business Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integral:

`int sqrt(2x^2 - 3)  "d"x`

Sum

Solution

`int sqrt(2x^2 - 3)  "d"x = int sqrt(2(x^2 - 3/2))  "d"x`

= `sqrt(2) int sqrt(x^2 - (sqrt(3)/2)^2)  "d"x`

= `sqrt(2) [x/2 sqrt(x^2 - 3/2) - 3/((2)(2)) log |x + sqrt(x^2 - 3/2)|] + "c"`

= `sqrt(2)[x/2 sqrt((2x^2 - 3)/2) - 3/4 log |x + sqrt(x^2 - 3)/2|] + "c"`

= `sqrt(2) [(xsqrt(2x^2 - 3))/(2sqrt(2)) - 3/4 log |(sqrt(2)x + sqrt(2x^2 - 3))/sqrt(2)|] + "c"`

= `x/2 sqrt(2x^2 - 3) - (3sqrt(2))/4 log |sqrt(2x) + sqrt(2x^2 - 3)| + "k"`

Where `(3sqrt(2))/4 log sqrt(2)` is a constant

So `(3sqrt(2))/4 log sqrt(2) + "c" = "k"`

shaalaa.com
Indefinite Integrals
  Is there an error in this question or solution?
Chapter 2: Integral Calculus – 1 - Miscellaneous problems [Page 55]

APPEARS IN

Samacheer Kalvi Business Mathematics and Statistics [English] Class 12 TN Board
Chapter 2 Integral Calculus – 1
Miscellaneous problems | Q 4 | Page 55
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×