Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
`int sqrt(2x^2 - 3) "d"x`
उत्तर
`int sqrt(2x^2 - 3) "d"x = int sqrt(2(x^2 - 3/2)) "d"x`
= `sqrt(2) int sqrt(x^2 - (sqrt(3)/2)^2) "d"x`
= `sqrt(2) [x/2 sqrt(x^2 - 3/2) - 3/((2)(2)) log |x + sqrt(x^2 - 3/2)|] + "c"`
= `sqrt(2)[x/2 sqrt((2x^2 - 3)/2) - 3/4 log |x + sqrt(x^2 - 3)/2|] + "c"`
= `sqrt(2) [(xsqrt(2x^2 - 3))/(2sqrt(2)) - 3/4 log |(sqrt(2)x + sqrt(2x^2 - 3))/sqrt(2)|] + "c"`
= `x/2 sqrt(2x^2 - 3) - (3sqrt(2))/4 log |sqrt(2x) + sqrt(2x^2 - 3)| + "k"`
Where `(3sqrt(2))/4 log sqrt(2)` is a constant
So `(3sqrt(2))/4 log sqrt(2) + "c" = "k"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`(8x + 13)/sqrt(4x + 7)`
Integrate the following with respect to x.
`(x^4 - x^2 + 2)/(x - 1)`
Integrate the following with respect to x.
`("e"^(3x) - "e"^(-3x))/"e"^x`
Integrate the following with respect to x.
`[1 - 1/2]"e"^((x + 1/x))`
Integrate the following with respect to x.
2 cos x – 3 sin x + 4 sec2x – 5 cosec2x
Integrate the following with respect to x.
ex(1 + x) log(xex)
Integrate the following with respect to x.
`1/(9 - 8x - x^2)`
Choose the correct alternative:
`int 1/x^3 "d"x` is
Choose the correct alternative:
The value of `int_2^3 f(5 - 3) "d"x - int_2^3 f(x) "d"x` is
Evaluate the following integral:
`int_0^1 sqrt(x(x - 1)) "d"x`