Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
`int_0^1 sqrt(x(x - 1)) "d"x`
उत्तर
`int_0^1 sqrt(x(x - 1)) "d"x = int_0^1 sqrt(x^2 - x) "d"x`
= `int_0^1 sqrt((x - 1/2)^2 - (1/2)^2)`
This is of the form `int_0^2 sqrt(x^2 - "a"^2)`
= `[((x - 1/2))/2 sqrt((x - 1/2)^2 - (1/2)^2) = 1/((4)(2)) log|(x - 1/2) + sqrt(x(x - 1))|]_0^1`
= `((1 - 1/2))/2 sqrt((1 - 1/2)^2 - (1/2)^2) - 1/8 log|(1 - 1/2) + sqrt(1(1 - 1))|`
= `(-((-1)/2))/2 sqrt(((-1)/2)^2 - (1/2)^2) + 1/8 log|(-1)/2 + sqrt(0(0 - 1))|`
= `1/4 (0) - 1/8 log 1/2 + 1/4 (0) - 1/8 log 1/2`
= 0
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
If f'(x) = x + b, f(1) = 5 and f(2) = 13, then find f(x)
Integrate the following with respect to x.
If f'(x) = `1/x` and f(1) = `pi/4`, then find f(x)
Integrate the following with respect to x.
log x
Integrate the following with respect to x.
`(6x + 7)/sqrt(3x^2 + 7x - 1)`
Integrate the following with respect to x.
`x/(2x^4 - 3x^2 - 2)`
Integrate the following with respect to x.
`"e"^x [1/x^2 - 2/x^3]`
Integrate the following with respect to x.
`1/(9 - 8x - x^2)`
Integrate the following with respect to x.
`sqrt(1 + x + x^2)`
Integrate the following with respect to x.
`sqrt(x^2 - 2)`
Choose the correct alternative:
`int "e"^(2x) [2x^2 + 2x] "d"x`