Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
`int log (x - sqrt(x^2 - 1)) "d"x`
उत्तर
Let u = `log(x - sqrt(x^2 - 1))`
du = `(1 - (2x)/(2sqrt(x^2 - 1)))/(x - sqrt(x^2 - 1))`
du = `(2sqrt(x^2 - 1) - 2x)/(2sqrt(x^2 - 1) (x - sqrt(x^2 - 1))`
du = `(-2(x - sqrt(x^2 - 1)))/(2sqrt(x^2 - 1)(x - sqrt(x^2 - 1))`
du = `(-1)/sqrt(x^2 - 1)`
So integral becomes
`xlog(x - sqrt(x^2 - 1)) + int x/sqrt(x^2 - 1) "d"x = xlog(x - sqrt(x^2 - 1)) + 1/2 int (2x)/sqrt(x^2 - 1) "d"x`
= `xlog(x - sqrt(x^2 - 1)) + 1/2 (x^2 - 1)^(1/2)/(1/2) + "c"`
= `xlog(x - sqrt(x^2 - 1)) + sqrt(x^2 - 1) + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`(x^4 - x^2 + 2)/(x - 1)`
Integrate the following with respect to x.
`x^3/(x + 2)`
Integrate the following with respect to x.
`1/(x(log x)^2`
Integrate the following with respect to x.
`sqrt(1 - sin 2x)`
Integrate the following with respect to x.
`x^5 "e"^x`
Integrate the following with respect to x.
`(log x)^3/x`
Integrate the following with respect to x.
`x/(2x^4 - 3x^2 - 2)`
Integrate the following with respect to x.
`1/(2x^2 - 9)`
Integrate the following with respect to x.
`sqrt(4x^2 - 5)`
Choose the correct alternative:
`int_2^4 ("d"x)/x` is