Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
`int (x + 1)^2 log x "d"x`
उत्तर
`int (x + 1)^2 log x "d"x`
We use integration by parts method.
Let u = log x
⇒ du = `1/x "d"x`
dv = `(x + 1)^2 "d"x`
So v = `(x + 1)^3/3`
We have `int (x + 1)^2 log x "d"x = (x + 1)^3/3 log x - int (x + 1)^3/3 (1/x) "d"x`
= `(x + 1)^3/3 log x - 1/3 int ((x^3 + 3x^2 + 3x + 1))/x "d"x`
= `(x + 1)^3/3 log x - 1/3 int (x^2 + 3x + 3 + 1/x) "d"x`
= `1/3[(x + 1)^3 log x - x^3/3 - (3x^2)/2 - 3x - log |x|] + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`x^3/(x + 2)`
Integrate the following with respect to x.
`(x^3 + 3x^2 - 7x + 11)/(x + 5)`
Integrate the following with respect to x.
`x/(2x^4 - 3x^2 - 2)`
Integrate the following with respect to x.
ex(1 + x) log(xex)
Integrate the following with respect to x.
`1/(2x^2 + 6x - 8)`
Integrate the following with respect to x.
`x^3/sqrt(x^8 - 1)`
Integrate the following with respect to x.
`1/(x + sqrt(x^2 - 1)`
Choose the correct alternative:
`int "e"^x/("e"^x + 1) "d"x` is
Evaluate the following integral:
`int log (x - sqrt(x^2 - 1)) "d"x`
Evaluate the following integral:
`int_0^1 sqrt(x(x - 1)) "d"x`