Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`1/(2x^2 + 6x - 8)`
उत्तर
`int 1/(2x^2 + 6x - 8) = 1/2 int ("d"x)/(x^2 + 3x - 4)`
= `1/2 int ("d"x)/((x + 3/2)^2 - 9/4 - 4)`
= `1/2 int ("d"x)/((x + 3/2)^2 - 25/4)`
= `1/2 int ("d"x)/((x + 3/2)^2 - (5/2)^2)`
= `1/2 1/(2(5/2)) log|(x + 3/2 - 5/2)/(x + 3/2 + 5/2)| + "c"`
= `1/10 log |(x - 1)/(x + 4)| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`sqrt(x)(x^3 - 2x + 3)`
Integrate the following with respect to x.
`(3x + 2)/((x - 2)(x - 3))`
Integrate the following with respect to x.
`("a"^x - "e"^(xlog"b"))/("e"^(x log "a") "b"^x)`
Integrate the following with respect to x.
`[1 - 1/2]"e"^((x + 1/x))`
Integrate the following with respect to x.
`1/(x(log x)^2`
Integrate the following with respect to x.
`(4x + 2) sqrt(x^2 + x + 1)`
Integrate the following with respect to x.
`1/(x^2 + 3x + 2)`
Choose the correct alternative:
`int ("d"x)/sqrt(x^2 - 36) + "c"`
Evaluate the following integral:
`int ("d"x)/(2 - 3x - 2x^2)`
Evaluate the following integral:
`int ("d"x)/("e"^x + 6 + 5"e"^-x)`