Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`"e"^x/("e"^(2x) - 9)`
उत्तर
`int ("e"^x "d"x)/("e"^(2x) - 9) = int ("e"^x "d"x)/(("e"^x)^2 - 3^2)`
Let ex = t
Then ex dx = dt
= `int "dt"/("t"^2 - 3^2)`
= `1/(2(3)) log|("t" - 3)/("t" + 3)| +"c"`
= `1/6 log |("e"^x - 3)/("e"^x + 3)| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`[1 - 1/2]"e"^((x + 1/x))`
Integrate the following with respect to x.
`(log x)^3/x`
Integrate the following with respect to x
`1/(x log x)`
Integrate the following with respect to x.
`1/(2x^2 + 6x - 8)`
Integrate the following with respect to x.
`1/sqrt(x^2 + 6x + 13)`
Choose the correct alternative:
`int logx/x "d"x, x > 0` is
Choose the correct alternative:
`int (2x^3)/(4 + x^4) "d"x` is
Evaluate the following integral:
`int sqrt(2x^2 - 3) "d"x`
Evaluate the following integral:
`int (x + 1)^2 log x "d"x`
Evaluate the following integral:
`int_0^1 sqrt(x(x - 1)) "d"x`