Advertisements
Advertisements
प्रश्न
Evaluate the following integral:
`int log (x - sqrt(x^2 - 1)) "d"x`
उत्तर
Let u = `log(x - sqrt(x^2 - 1))`
du = `(1 - (2x)/(2sqrt(x^2 - 1)))/(x - sqrt(x^2 - 1))`
du = `(2sqrt(x^2 - 1) - 2x)/(2sqrt(x^2 - 1) (x - sqrt(x^2 - 1))`
du = `(-2(x - sqrt(x^2 - 1)))/(2sqrt(x^2 - 1)(x - sqrt(x^2 - 1))`
du = `(-1)/sqrt(x^2 - 1)`
So integral becomes
`xlog(x - sqrt(x^2 - 1)) + int x/sqrt(x^2 - 1) "d"x = xlog(x - sqrt(x^2 - 1)) + 1/2 int (2x)/sqrt(x^2 - 1) "d"x`
= `xlog(x - sqrt(x^2 - 1)) + 1/2 (x^2 - 1)^(1/2)/(1/2) + "c"`
= `xlog(x - sqrt(x^2 - 1)) + sqrt(x^2 - 1) + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
(3 + x)(2 – 5x)
Integrate the following with respect to x.
`(x^3 + 3x^2 - 7x + 11)/(x + 5)`
Integrate the following with respect to x.
`[1 - 1/2]"e"^((x + 1/x))`
Integrate the following with respect to x.
`1/(sin^2x cos^2x) ["Hint:" sin^2x + cos^2x = 1]`
Integrate the following with respect to x.
`"e"^x [1/x^2 - 2/x^3]`
Choose the correct alternative:
`int (sin5x - sinx)/(cos3x) "d"x` is
Choose the correct alternative:
`int sqrt("e"^x) "d"x` is
Choose the correct alternative:
`int[9/(x - 3) - 1/(x + 1)] "d"x` is
Choose the correct alternative:
`int_0^(pi/3) tan x "d"x` is
Integrate the following with respect to x.
`sqrtx (x^3 - 2x + 3)`