Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`(x^("e" - 1) + "e"^(x - 1))/(x^"e" + "e"^x)`
उत्तर
`(x^("e" - 1) + "e"^(x - 1))/(x^"e" + "e"^x) = (x^("" 1) + "e"^x/"e")/(x^"e" + "e"^x)`
= `("e"x^("e" - 1) + "e"^x)/("e"(x^"e" + "e"^x))`
Let f(x) = xe + ex
Then f'(x) = `"e"x^("e" - 1) + "e"^x`
So `int (x^("e" - 1) + "e"^(x - 1))/(x^"e" + "e"^x) "d"x = int ("e"x^("e" - 1) + "e"^x)/("e"(x^"e" + "e"^x)) "d"x`
= `1/"e" int ("f'"(x))/("f"(x)) "d"x`
= `1/"e" log |"f"(x)| + "c"`
= `1/"e" log|x^"e" + "e"^x| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`sqrt(3x + 5)`
Integrate the following with respect to x.
`(x^3 + 3x^2 - 7x + 11)/(x + 5)`
Integrate the following with respect to x.
`("e"^(3x) - "e"^(-3x))/"e"^x`
Integrate the following with respect to x.
`("e"^(3x) +"e"^(5x))/("e"^x + "e"^-x)`
Integrate the following with respect to x.
2 cos x – 3 sin x + 4 sec2x – 5 cosec2x
Integrate the following with respect to x.
`(cos 2x + 2sin^2x)/(cos^2x)`
Integrate the following with respect to x.
`x/(2x^4 - 3x^2 - 2)`
Choose the correct alternative:
`int 2^x "d"x` is
Evaluate the following integral:
`int ("d"x)/(2 - 3x - 2x^2)`
Evaluate the following integral:
`int ("d"x)/("e"^x + 6 + 5"e"^-x)`