Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`x/(2x^4 - 3x^2 - 2)`
उत्तर
`x/(2x^4 - 3x^2 - 2) = x/((2x^2 + 1)(x^2 - 2))`
Let x2 = t
Then 2x dx = dt
So `int x/(2x^4 - 3x^2 - 2) = 1/2 int (2x "d"x)/((2x^2 + 1)(x^2 - 2))`
= `1/2 int "dt"/((2"t" + 1)("t" - 2))`
We make use of partial fraction method
Let `1/((2"t" + 1)("t" - 2)) = "A"/(2"t" + 1) + "B"/("t" - 2)`
1 = A(t − 2) + B(2t + 1)
Let t = 2, Then 1 = 5B
⇒ B = `1/5`
Let t = `- 1/2`,Then 1 = `(-5)/2`A
⇒ A = `(- 2)/5`
So `1/2 int "dt"/((2"t" + 1)("t" - 2)) = 1/2 int ((-2)/5)/(2"t"+ 1) "dt" + 1/2 int (1/5)/("t" - 2) "dt"`
= `(- log|2"t" + 1|)/(5(2)) + 1/10 log |"t" - 2| + "c"`
Putting t = x2, we get = `(- log|2x^2 + 1|)/10 + 1/10 log|x^2 - 2| + "c"`
= `1/10 log |(x^2 - 2)/(2x^2 + 1)| + "c"`
Using log (a) − log (b) = `log "a"/"b"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`1/(x(log x)^2`
Integrate the following with respect to x.
If f'(x) = ex and f(0) = 2, then find f(x)
Integrate the following with respect to x.
sin3x
Integrate the following with respect to x.
`(2x + 5)/(x^2 + 5x - 7)`
Integrate the following with respect to x.
`"e"^(2x)/("e"^(2x) - 2)`
Integrate the following with respect to x.
`1/(9 - 16x^2)`
Integrate the following with respect to x.
`1/(2x^2 - 9)`
Choose the correct alternative:
`int logx/x "d"x, x > 0` is
Choose the correct alternative:
`int_0^(pi/3) tan x "d"x` is
Evaluate the following integral:
`int_0^3 (x dx)/(sqrt(x + 1)+ sqrt(5x + 1))`