हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी वाणिज्य कक्षा १२

Evaluate the following integral: ∫03xdxx+1+5x+1 - Business Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

`int_0^3 (x dx)/(sqrt(x + 1)+ sqrt(5x + 1))`

योग

उत्तर

`x/(sqrt(x + 1) + sqrt(5x + 1)) = x/(sqrt(x + 1) + sqrt(5 + 1)) xx (sqrt(x + 1) - sqrt(5x + 1))/(sqrt(x + 1) - sqrt(5x + 1)`

= `(x[sqrt(x + 1) - sqrt5x + 1])/((x + 1) - (5x + 1))`

= `(x(sqrt(x + 1) - sqrt(5x + 1)))/((x + 1) - (5x + 1))`

= `- 1/4 (sqrt(x + 1) - sqrt(5x + 1))`

So integral becomes

`- 1/4 int_0^3 (sqrt(x + 1) - sqrt(5x + 1))  "d"x = - 1/4 [(x + 1)^(3/2)/(3/2) - (5x + 1)^(3/2)/(3/2)^5]_0^3`

= `- 1/4 [4^(3/2)/(3/2) - (16)^(3/2)/(15/2)] + 1/4 [(1)^(3/2)/(3/2) - (-1)^(3/2)/(15/2)]`

= `- 1/4 (2/3 (8) - 2/15(64)) + 1/4[2/3 - 2/15]`

= `1/4 (16/3 - 128/15 - 2/3 + 2/15)`

= `- 1/4[14/3 - 126/15]`

= `- 1/4((70 - 126)/15)`

= `14/15`

shaalaa.com
Indefinite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Integral Calculus – 1 - Miscellaneous problems [पृष्ठ ५५]

APPEARS IN

सामाचीर कलवी Business Mathematics and Statistics [English] Class 12 TN Board
अध्याय 2 Integral Calculus – 1
Miscellaneous problems | Q 10 | पृष्ठ ५५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×