Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`1/(9 - 8x - x^2)`
उत्तर
`int 1/(9 - 8x - x^2) "d"x`
Consider `9 - 8x - x^2 = 3x^2 - (x^2 + 8x)`
= `9 - [(x + 4)^2 - 16]`
= `9 + 16 - (x + 4)^2`
= `25 - (x + 4)^2`
= `5^2 - (x + 4)^2`
So integral becomes
`int ("d"x)/(5^2 - (x + 4)^2) = 1/10 log|(5 + x + 4)/(5 - x - 4)| + "c"`
= `1/10 log|(9 + x)/(1 - x)| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
If f'(x) = `1/x` and f(1) = `pi/4`, then find f(x)
Integrate the following with respect to x.
`[1 - 1/2]"e"^((x + 1/x))`
Integrate the following with respect to x.
`(4x + 2) sqrt(x^2 + x + 1)`
Integrate the following with respect to x.
ex(1 + x) log(xex)
Integrate the following with respect to x.
`"e"^x [1/x^2 - 2/x^3]`
Choose the correct alternative:
`int (sin2x)/(2sinx) "d"x` is
Choose the correct alternative:
`int sqrt("e"^x) "d"x` is
Choose the correct alternative:
`int "e"^(2x) [2x^2 + 2x] "d"x`
Choose the correct alternative:
`int[9/(x - 3) - 1/(x + 1)] "d"x` is
Evaluate the following integral:
`int ("d"x)/("e"^x + 6 + 5"e"^-x)`