Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`("e"^x + 1)^2 "e"^x`
उत्तर
`int("e"^x + 1)^2 "e"^x "d"x int[("e"^x)^2 + 2"e"^x + 1]"e"^x "d"x`
= `int ("e"^(2x) * "e"^x+ 2"e"^x* "e"^x + "e"^x) "d"x`
= `int ("e"^(3x) + 2"e"^(2x) + "e"^x) "d"x`
= `"e"^(3x)/3 + (2"e"^(2x))/2 + "e"^x + "c"`
= `"e"^(3x)/3 + "e"^(2x) + "e"^x + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`[1 - 1/2]"e"^((x + 1/x))`
Integrate the following with respect to x.
x log x
Integrate the following with respect to x.
`(4x + 2) sqrt(x^2 + x + 1)`
Integrate the following with respect to x.
`"e"^x [(x - 1)/(x + 1)^3]`
Integrate the following with respect to x.
`sqrt(x^2 - 2)`
Choose the correct alternative:
`int 1/x^3 "d"x` is
Choose the correct alternative:
`int ("d"x)/sqrt(x^2 - 36) + "c"`
Choose the correct alternative:
`int (2x + 3)/sqrt(x^2 + 3x + 2) "d"x` is
Evaluate the following integral:
`int ("d"x)/(2 - 3x - 2x^2)`
Evaluate the following integral:
`int sqrt(2x^2 - 3) "d"x`