Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x.
`(sqrt(2x) - 1/sqrt(2x))^2`
उत्तर
= `int[(sqrt(2x))^2 - 2(sqrt(2x)) (1/sqrt(2x)) + (1/sqrt(2x))^2] "d"x`
= `int (2x - 2 + 1/(2x)) "d"x`
= `2(x^2/2) - 2x + 1/2 log |x| + "c"`
= `x^2 - 2x + 1/2 log |x| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following with respect to x.
`(8x + 13)/sqrt(4x + 7)`
Integrate the following with respect to x.
log x
Integrate the following with respect to x.
`(4x + 2) sqrt(x^2 + x + 1)`
Integrate the following with respect to x.
`(x^("e" - 1) + "e"^(x - 1))/(x^"e" + "e"^x)`
Integrate the following with respect to x.
`1/sqrt(9x^2 - 7)`
Integrate the following with respect to x.
`x^3/sqrt(x^8 - 1)`
Choose the correct alternative:
`int (sin2x)/(2sinx) "d"x` is
Choose the correct alternative:
`int (sin5x - sinx)/(cos3x) "d"x` is
Choose the correct alternative:
`int (2x + 3)/sqrt(x^2 + 3x + 2) "d"x` is
Evaluate the following integral:
`int_0^3 (x dx)/(sqrt(x + 1)+ sqrt(5x + 1))`