Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x:
`(2x + 1)/sqrt(9 + 4x - x^2)`
उत्तर
Let 2x + 1 = `"A" "d"/("d"x) (9 + 4x - x^2) + "B"`
2x + 1 = A(4 – 2x) + B
2x + 1 = 4A – 2Ax + B
– 2A = 2
⇒ A = – 1
4A + B = 1
⇒ 4(– 1) + B = 1
B = 1 + 4 = 5
B = 5
2x + 1 = – 1(4 – 2x) + 5
`int (2x + 1)/sqrt(9 + 4x - x^2) "d"x = int (-(4 - 2x) + 5)/sqrt(9 + 4x - x^2)`
= `int (- (4 - 2x))/sqrt(9 + 4x - x^2) "d"x + 5 int ("d"x)/sqrt(9 + 4x - x^2)`
Put 9 + 4x – x2 = t
(4x – 2) dx = dt
= `int (- "dt")/sqrt("t") + 5 int ("d"x)/sqrt(9 - (x^2 - 4x))`
= `int - "t"^(- 1/2) "dt" + 5 int ("d"x)/sqrt(9 - [(x - 2)^2 - 2^2]`
= `- ("t"^(- 1/2 + 1))/(- 1/2 + 1) + 5 int ("d"x)/sqrt(9 - [(x - 2)^2 - 2^2]`
= `- ("t"^(1/2))/(1/2) + 5 int ("d"x)/sqrt(9 - [(x - 2)^2 - 4]`
= ` - 2sqrt("t") + 5 int ("d"x)/sqrt(13 - (x - 2)^2`
Put x – 2 = u
dx = du
= `- 2 sqrt(9 + 4x - x^2) + 5 int ("d"x)/sqrt((sqrt(13))^2 - "u"^2)`
= `- 2 sqrt(9 + 4x - x^2) + 5 sin^-1 ("u"/sqrt(13)) + "c"`
`int (2x + 1)/sqrt(9 + 4x - x^2) "d"x = - 2sqrt(9 + 4x - x^2) + 5 sin^-1 ((x - 2)/sqrt(13)) + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following functions with respect to x :
cos 3x cos 2x
Integrate the following functions with respect to x :
`"e"^(x log "a") "e"^x`
Integrate the following functions with respect to x :
`(3x + 4) sqrt(3x + 7)`
Integrate the following with respect to x :
`x/sqrt(1 + x^2)`
Integrate the following with respect to x :
`x^2/(1 + x^6)`
Integrate the following with respect to x:
25xe–5x
Integrate the following with respect to x:
x sec x tan x
Integrate the following with respect to x:
x5ex2
Integrate the following with respect to x:
`sin^-1 ((2x)/(1 + x^2))`
Integrate the following with respect to x:
`"e"^x ((x - 1)/(2x^2))`
Integrate the following with respect to x:
`"e"^x ((2 + sin 2x)/(1 + cos 2x))`
Find the integrals of the following:
`1/(9x^2 - 4)`
Integrate the following with respect to x:
`(x + 2)/sqrt(x^2 - 1)`
Integrate the following functions with respect to x:
`sqrt((6 - x)(x - 4))`
Choose the correct alternative:
The gradient (slope) of a curve at any point (x, y) is `(x^2 - 4)/x^2`. If the curve passes through the point (2, 7), then the equation of the curve is
Choose the correct alternative:
`int ("e"^x (1 + x))/(cos^2(x"e"^x)) "d"x` is
Choose the correct alternative:
`int tan^-1 sqrt((1 - cos 2x)/(1 + cos 2x)) "d"x` is
Choose the correct alternative:
`int x^2 cos x "d"x` is
Choose the correct alternative:
`int ("d"x)/("e"^x - 1)` is
Choose the correct alternative:
`int "e"^(sqrt(x)) "d"x` is