Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x:
`(2x - 3)/(x^2 + 4x - 12)`
उत्तर
Let 2x – 3 = `"A" "d"/("d"x) (x^2 + 4x - 12) + "B"`
2x – 3 = A(2x + 4) + B
2x – 3 = 2Ax + 4A + B
2A = 2
⇒ A = 1
4A + B = – 3
4 × 1 + B – 3
⇒ B = – 3 – 4 = – 7
2x – 3 = 1(2x + 4) – 7
`int (2x - 3)/(x^2 + 4x - 12) "d"x = int (2x + 4 - 7)/(x^2 + 4x - 12) "d"x`
= `int (2x + 4)/(x^2 + 4x - 12) "d"x - 7 int ("d"x)/(x^2 + 4x - 12)`
Put x2 + 4x – 12 = t
(2x + 4)dx = dt
= `int "dt"/"t" - 7 int ("d"x)/((x + 2)^2 - 2^2 - 12)`
= `log |"t"| - 7 int ("d"x)/((x + 2)^2 - 4 - 12)`
= `log |x^2 + 4x - 12| - 7 int ("d"x)/((x + 2)^2 - 16)`
= `log |x^2 + 4x - 12| - 7 int ("d"x)/((x + 2)^2 - 4^2)`
Put x + 2 = u
dx = du
= `log |x^2 + 4x - 12| - 7 int "du"/("u"^2 - 4^2)`
`int ("d"x)/(x^2 - "a"^2) = 1/(2"a") log |(x - "a")/(x + "a")| + "c"`
= `log |x^2 + 4x - 12| - 7 xx 1/(2 xx 4) log |("u" - 4)/("u" + 4)| + "c"`
= `log |x^2 + 4x - 12| - 7/8 xx log |(x + 2 - 4)/(x + 2 - 4)| + "c"`
`int (2x - 3)/(x^2 + 4x - 12) "d"x = log |x^2 + 4x - 12| - 7/8 xx log |(x - 2)/(x + 6)| + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate : `∫_0^(pi/2) (sinx.cosx)/(1 + sin^4x)`.dx
Evaluate : `int _0^1 ("x" . ("sin"^-1 "x")^2)/sqrt (1 - "x"^2)` dx
Integrate the following functions with respect to x :
`(3 + 4cosx)/(sin^2x)`
Integrate the following functions with respect to x :
`(3x - 9)/((x - 1)(x + 2)(x^2 + 1))`
Integrate the following functions with respect to x :
`x^3/((x - 1)(x - 2))`
Integrate the following with respect to x :
`cot x/(log(sin x))`
Integrate the following with respect to x:
x2 cos x
Integrate the following with respect to x:
`(x sin^-1 x)/sqrt(1 - x^2)`
Integrate the following with respect to x:
`"e"^(2x) sinx`
Integrate the following with respect to x:
`"e"^(- 3x) cos x`
Find the integrals of the following:
`1/sqrt((2 + x)^2 - 1)`
Integrate the following with respect to x:
`(5x - 2)/(2 + 2x + x^2)`
Integrate the following functions with respect to x:
`sqrt((x + 1)^2 - 4)`
Choose the correct alternative:
The gradient (slope) of a curve at any point (x, y) is `(x^2 - 4)/x^2`. If the curve passes through the point (2, 7), then the equation of the curve is
Choose the correct alternative:
`int sqrt(tanx)/(sin2x) "d"x` is
Choose the correct alternative:
`int tan^-1 sqrt((1 - cos 2x)/(1 + cos 2x)) "d"x` is
Choose the correct alternative:
`int sqrt((1 - x)/(1 + x)) "d"x` is