Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x:
`(x sin^-1 x)/sqrt(1 - x^2)`
उत्तर
`int (x sin^-1 x)/sqrt(1 - x^2) * "d"x`
Put x = sin θ
⇒ dx = cos θ dθ
`int (x sin^-1x)/sqrt(1 - x^2) * "d"x = int (sin theta sin^-1 (sin theta))/sqrt(1 - sin^2theta) costheta "d"theta`
= `int (theta sin theta)/sqrt(cos^2 theta) * cos theta "d"theta`
=`int (theta sin theta)/cos theta * cos theta "d"theta`
`int (x sin^-1x)/sqrt(1 - x^2) * "d"x = int theta sin theta "d"theta` ..........(1)
Consider `int theta sin theta "d"theta`
u = θ
u' = 1
u" = 0
dv = sin θ dθ
⇒ v = `int sin theta "d"theta`
⇒ v = – cos θ
v1 = `int "v" "d"theta`
= `int - cos theta "d"theta`
= – sin θ
v2 = `int "v"_1 "d"theta`
= `int - sin theta "d"theta`
= (– cos θ)
= cos θ
`int "u" "dv"` = uv – u'v1 + u"v2 – u"'v3 + ...........
`int theta sin theta = theta(- cos theta)- 1(- sin theta) + 0(cos theta)`
= `- theta cos theta + sin theta + "c"`
(1) ⇒ `int (x sin^-1x)/sqrt(1 - x^2) "d"x = - theta cos theta + sin theta + "c"`
x = sin θ
⇒ θ = `sin^-1x`
cos θ = `sqrt(1 - sin^2theta)`
= `sqrt(1 - x^2)`
∴ `int (x sin^-1x)/sqrt(1 - x^2) "d"x = - sin^-1x (sqrt(1 - x^2)) + x + "c"`
`int (x sin^-1x)/sqrt(1 - x^2) "d"x = - sqrt(1 - x^2) sin^-1x + x + "c"`
APPEARS IN
संबंधित प्रश्न
Find the volume of the solid generated by the complete revolution of the ellipse `"x"^2/36 + "y"^2/25 = 1` about Y-axis.
Integrate the following functions with respect to x :
(2x – 5)(3x + 4x)
Integrate the following functions with respect to x :
`(8^(1 + x) + 4^(1 - x))/2^x`
Integrate the following functions with respect to x :
`(x + 1)/((x + 2)(x + 3))`
Integrate the following with respect to x :
`x/sqrt(1 + x^2)`
Integrate the following with respect to x :
`1/(x log x log (log x))`
Integrate the following with respect to x :
sin5x cos3x
Integrate the following with respect to x:
x sin 3x
Integrate the following with respect to x:
`sin^-1 ((2x)/(1 + x^2))`
Integrate the following with respect to x:
`"e"^(- 3x) cos x`
Integrate the following with respect to x:
`"e"^x ((2 + sin 2x)/(1 + cos 2x))`
Find the integrals of the following:
`1/sqrt(xx^2 + 4x + 2)`
Integrate the following functions with respect to x:
`sqrt(9 - (2x + 5)^2`
Integrate the following functions with respect to x:
`sqrt((x + 1)^2 - 4)`
Choose the correct alternative:
`int ("e"^x(x^2 tan^-1x + tan^-1x + 1))/(x^2 + 1) "d"x` is
Choose the correct alternative:
`int x^2 cos x "d"x` is
Choose the correct alternative:
`int sqrt((1 - x)/(1 + x)) "d"x` is
Choose the correct alternative:
`int 1/(x sqrt(log x)^2 - 5) "d"x` is
Choose the correct alternative:
`int "e"^(sqrt(x)) "d"x` is