Advertisements
Advertisements
Question
Integrate the following with respect to x:
`(x sin^-1 x)/sqrt(1 - x^2)`
Solution
`int (x sin^-1 x)/sqrt(1 - x^2) * "d"x`
Put x = sin θ
⇒ dx = cos θ dθ
`int (x sin^-1x)/sqrt(1 - x^2) * "d"x = int (sin theta sin^-1 (sin theta))/sqrt(1 - sin^2theta) costheta "d"theta`
= `int (theta sin theta)/sqrt(cos^2 theta) * cos theta "d"theta`
=`int (theta sin theta)/cos theta * cos theta "d"theta`
`int (x sin^-1x)/sqrt(1 - x^2) * "d"x = int theta sin theta "d"theta` ..........(1)
Consider `int theta sin theta "d"theta`
u = θ
u' = 1
u" = 0
dv = sin θ dθ
⇒ v = `int sin theta "d"theta`
⇒ v = – cos θ
v1 = `int "v" "d"theta`
= `int - cos theta "d"theta`
= – sin θ
v2 = `int "v"_1 "d"theta`
= `int - sin theta "d"theta`
= (– cos θ)
= cos θ
`int "u" "dv"` = uv – u'v1 + u"v2 – u"'v3 + ...........
`int theta sin theta = theta(- cos theta)- 1(- sin theta) + 0(cos theta)`
= `- theta cos theta + sin theta + "c"`
(1) ⇒ `int (x sin^-1x)/sqrt(1 - x^2) "d"x = - theta cos theta + sin theta + "c"`
x = sin θ
⇒ θ = `sin^-1x`
cos θ = `sqrt(1 - sin^2theta)`
= `sqrt(1 - x^2)`
∴ `int (x sin^-1x)/sqrt(1 - x^2) "d"x = - sin^-1x (sqrt(1 - x^2)) + x + "c"`
`int (x sin^-1x)/sqrt(1 - x^2) "d"x = - sqrt(1 - x^2) sin^-1x + x + "c"`
APPEARS IN
RELATED QUESTIONS
Find the elasticity of demand if the marginal revenue is ₹ 50 and price is ₹ 75.
Evaluate : `int _0^1 ("x" . ("sin"^-1 "x")^2)/sqrt (1 - "x"^2)` dx
Integrate the following functions with respect to x :
`"e"^(x log "a") "e"^x`
Integrate the following with respect to x :
`(sin sqrt(x))/sqrt(x)`
Integrate the following with respect to x :
`(sin^-1 x)/sqrt(1 - x^2)`
Integrate the following with respect to x :
`1/(x log x log (log x))`
Integrate the following with respect to x :
x(1 – x)17
Integrate the following with respect to x:
x log x
Integrate the following with respect to x:
27x2e3x
Integrate the following with respect to x:
`"e"^("a"x) cos"b"x`
Integrate the following with respect to x:
`"e"^(- 4x) sin 2x`
Integrate the following with respect to x:
`"e"^(- 3x) cos x`
Find the integrals of the following:
`1/(25 - 4x^2)`
Integrate the following with respect to x:
`(2x + 1)/sqrt(9 + 4x - x^2)`
Integrate the following functions with respect to x:
`sqrt((6 - x)(x - 4))`
Choose the correct alternative:
If `int 3^(1/x)/x^2 "d"x = "k"(3^(1/x)) + "c"`, then the value of k is
Choose the correct alternative:
`int sin^2x "d"x` is
Choose the correct alternative:
`int (x^2 + cos^2x)/(x^2 + 1) "cosec"^2 x/("d"x)` is
Choose the correct alternative:
`int 1/(x sqrt(log x)^2 - 5) "d"x` is