Advertisements
Advertisements
प्रश्न
Integrate the following with respect to x:
`(2x + 3)/sqrt(x^2 + 4x + 1)`
उत्तर
Let 2x + 3 = `"A" "d"/("d"x) (x^2 + 4x + 1) + "B"`
2x + 3 = A(2x + 3) + B
2A = 2
⇒ A = 1
4A + B = 3
4 × 1 + B = 3
⇒ B = 3 – 4
B = – 1
(2x + 3) = (2x + 4) – 1
`int (2x + 3)/sqrt(x^2 + 4x + 1) "d"x = int ((2x + 4) - 1)/sqrt(x^2 + 4x + 1) "d"x`
= `int ((2x + 4))/sqrt(x^2 + 4x + 1) "d"x - int ("d"x)/sqrt(x^2 + 4x + 1)`
Put x2 + 4x + 1 = t
(2x + 4) dx = dt
= `intt "dt"/sqrt("t") - int ("d"x)/sqrt((x + 2)^2 - 2^2 + 1)`
= `int "t"^(- 1/2) "dt" - int ("d"x)/sqrt((x + 2)^2 - 3)`
= `("t"^(- 1/2 + 1))/(- 1/2 + 1) - int ("d"x)/sqrt((x + 2)^2 - (sqrt(3))^2`
Put x + 2 = u
dx = dt
= `"t"^(1/2)/(1/2) - int "du"/sqrt("u"^2 - (sqrt(3))^2`
= `2sqrt("t") - log |"u" + sqrt("u"^2 - (sqrt(3))^2)| + "c"`
= `2 sqrt(x^2 + 4x + 1) - log |(x + 2) + sqrt((x + 2)^2 - (sqrt(3))^2)| + "c"`
= `2 sqrt(x^2 + 4x + 1) - log|(x + 2) + sqrt(x^2 + 4x + 4 - 3)| + "c"`
`int (2x + 3)/sqrt(x^2 + 4x + 1) "d"x = 2 sqrt(x^2 + 4x + 1) - log|(x + 2) + sqrt(x^2 + 4x + 1)| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the following functions with respect to x :
`1/((x - 1)(x + 2)^2`
Integrate the following functions with respect to x :
`x^3/((x - 1)(x - 2))`
Integrate the following with respect to x :
`(sin sqrt(x))/sqrt(x)`
Integrate the following with respect to x :
`cot x/(log(sin x))`
Integrate the following with respect to x :
`("cosec" x)/(log(tan x/2))`
Integrate the following with respect to x :
`(sin^-1 x)/sqrt(1 - x^2)`
Integrate the following with respect to x :
`sqrt(x)/(1 + sqrt(x))`
Integrate the following with respect to x:
9xe3x
Integrate the following with respect to x:
`"e"^("a"x) cos"b"x`
Integrate the following with respect to x:
`"e"^(- 3x) sin 2x`
Integrate the following with respect to x:
`"e"^x ((x - 1)/(2x^2))`
Integrate the following with respect to x:
`"e"^(tan^-1 x) ((1 + x + x^2)/(1 + x^2))`
Integrate the following with respect to x:
`(x + 2)/sqrt(x^2 - 1)`
Choose the correct alternative:
`int ("e"^(6 log x) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x` is
Choose the correct alternative:
`int tan^-1 sqrt((1 - cos 2x)/(1 + cos 2x)) "d"x` is
Choose the correct alternative:
`int x^2 cos x "d"x` is
Choose the correct alternative:
`int sqrt((1 - x)/(1 + x)) "d"x` is
Choose the correct alternative:
`int (sec^2x)/(tan^2 x - 1) "d"x`
Choose the correct alternative:
`int "e"^(- 7x) sin 5x "d"x` is
Choose the correct alternative:
`int x^2 "e"^(x/2) "d"x` is