Advertisements
Advertisements
प्रश्न
कारगिल येथे एका आठवड्यातील सोमवार ते शनिवार या दिवसांच्या तापमानांची नोंद केली. त्या नोंदी अंकगणिती श्रेढीत आहेत असे आढळले. सोमवार व शनिवारच्या तापमानांची बेरीज मंगळवार व शनिवारच्या तापमानांच्या बेरजेपेक्षा 5° सेल्सिअसने जास्त आहे. जर बुधवारचे तापमान - 30° सेल्सिअस असेल, तर प्रत्येक दिवसाचे तापमान काढा.
उत्तर
समजा, सोमवार ते शनिवार या दिवसांची अंकगणिती श्रेढीतील तापमाने अनुक्रमे
a, a + d, a + 2d, a + 3d, a + 4d, a + 5d ही आहेत.
दिलेल्या पहिल्या अटीनुसार, सोमवार व शनिवारच्या तापमानांची बेरीज मंगळवार व शनिवारच्या तापमानांच्या बेरजेपेक्षा 5° सेल्सिअसने जास्त आहे.
(a) + (a + 5d) = (a + d) + (a + 5d) + 5°
∴ d = - 5°
दिलेल्या दुसऱ्या अटीनुसार, बुधवारचे तापमान - 30° सेल्सिअस आहे.
a + 2d = - 30°
∴ a + 2(- 5°) = - 30°
∴ a – 10° = - 30°
∴ a = - 30° + 10° = - 20°
∴ a + d = - 20° - 5° = - 25°
a + 3d = - 20° + 3(- 5°) = - 20° - 15° = - 35°
a + 4d = - 20° + 4(- 5°) = - 20° - 20° = - 40°
a + 5d = - 20° + 5(- 5°) = - 20° - 25° = - 45°
∴ बुधवार सोडून इतर दिवसांची तापमाने अनुक्रमे - 20°C, - 25°C, - 35°C, - 40°C व -45°C ही आहेत.
APPEARS IN
संबंधित प्रश्न
सचिनने राष्ट्रीय बचत प्रमाणपत्रांमध्ये पहिल्या वर्षी ₹ 5000, दुसऱ्या वर्षी ₹ 7000, तिसऱ्या वर्षी ₹ 9000 याप्रमाणे रक्कम गुंतवली, तर त्याची 12 वर्षांतील एकूण गुंतवणूक किती?
एका नाट्यगृहात खुर्च्यांच्या एकूण 27 रांगा आहेत. पहिल्या रांगेत 20 खुर्च्या आहेत, दुसऱ्या 22 खुर्च्या तिसऱ्या रांगेत 24 खुर्च्या याप्रमाणे सर्व खुर्च्यांची मांडणी आहे, तर 15 व्या रांगेत एकूण किती खुर्च्या असतील आणि नाट्यगृहात एकूण किती खुर्च्या असतील?
एका गृहस्थाने ₹ 8000 कर्जाऊ घेतले आणि त्यावर ₹ 1360 व्याज देण्याचे कबूल केले. प्रत्येक हप्ता आधीच्या हप्त्यापेक्षा ₹ 40 कमी देऊन सर्व रक्कम 12 मासिक हप्त्यांत भरली, तर त्याने दिलेला पहिला व शेवटचा हप्ता किती होता?
₹ 1000 ही रक्कम 10 % सरळव्याज दराने गुंतवली, तर प्रत्येक वर्षाच्या शेवटी मिळणाऱ्या व्याजाची रक्कम अंकगणितीय श्रेढी होईल का हे तपासा. ती अंकगणितीय श्रेढी होत असेल, तर 20 वर्षांनंतर मिळणाऱ्या व्याजाची रक्कम काढा. त्यासाठी खालील कृती पूर्ण करा.
सरळव्याज = `("P" xx "R" xx "N")/100`
1 वर्षानंतर मिळणारे सरळव्याज = `(1000 xx 10 xx 1)/100 = square`
2 वर्षानंतर मिळणारे सरळव्याज = `(1000 xx 10 xx 2)/100 = square`
3 वर्षानंतर मिळणारे सरळव्याज = `(square xx square xx square)/100` = 300
अशाप्रकारे 4, 5, 6 वर्षांनंतर मिळणारे सरळव्याज अनुक्रमे 400, `square`, `square` असेल.
या संख्येवरून d = `square`, आणि a = `square`
20 वर्षांनंतर मिळणारे सरळव्याज
tn = a + (n - 1)d
t20 = `square` + (20 - 1)`square`
t20 = `square`
20 वर्षांनंतर मिळणारे एकूण व्याज = `square`
अंकगणिती श्रेढीच्या m व्या पदाची m पट ही n व्या पदाच्या n पटीबरोबर असेल, तर त्याचे (m + n) वे पद शून्य असते हे दाखवा. (m ≠ n)
एका अंकगणिती श्रेढीत 37 पदे आहेत. सर्वांत मध्यावर असलेल्या तीन पदांची बेरीज 225 आहे आणि शेवटच्या तीन पदांची बेरीज 429 आहे, तर अंकगणिती श्रेढी लिहा.
207 या संख्येचे तीन भाग असे करा, की त्या संख्या अंकगणिती श्रेढीत असतील व लहान दोन भागांचा गुणाकार 4623 असेल.
कल्पना दर महिन्याला ठरावीक रक्कम बचत करते. तिने पहिल्या महिन्यात 100रु., दुसऱ्या महिन्यात 150रु., तिसऱ्या महिन्यात 200रु. याप्रमाणे बचत केली, तर किती महिन्यात 1200रु. बचत होईल?
कृती: कल्पनाची मासिक बचत 100 रु., 150 रु., 200 रु. ......... 1200 रु. अशी आहे.
येथे d = 50 रु. आहे. म्हणून, दिलेली क्रमिका ही अंकगणिती श्रेढी आहे.
a = 100, d = 50, tn = `square`, n = ?
tn = a + (n – 1) `square`
`square` =100 + (n – 1) × 50
`square/50` = n - 1
n = `square`
म्हणून, 1200 रु. बचत `square` महिन्यात होईल.
3900 रुपये 12 हप्त्याने असे परत केले, की प्रत्येक हप्ता हा आधीच्या हप्त्यापेक्षा 10 रुपये जास्त होता, तर पहिला व शेवटचा हप्ता किती रुपयांचा होता?
एका व्यापाराने 1000 रु. कर्जाऊ घेतले व त्यावरील 140 रु. व्याज व मुद्दल 12 हप्त्यात परत करण्याचे कबूल केले. प्रत्येक हप्त्याची रक्कम अगोदरच्या हप्त्यापेक्षा 10 रु. कमी आहे, तर त्याने पहिल्या हप्त्यात किती रक्कम परतफेड केली?