हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) ९ वीं कक्षा

खालील आकृतीच्या आधारे प्रश्नांची उत्तरे लिहा. i. बिंदू B पासून समदूर असणारे बिंदू कोणते? ii. बिंदू Q पासून समदूर असणाऱ्या बिंदूंची एक जोडी लिहा. iii. d(U,V), d(P,C), d(V,B), d(U, L) काढा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements

प्रश्न

खालील आकृतीच्या आधारे प्रश्नांची उत्तरे लिहा.

  1. बिंदू B पासून समदूर असणारे बिंदू कोणते?
  2. बिंदू Q पासून समदूर असणाऱ्या बिंदूंची एक जोडी लिहा.
  3. d(U,V), d(P,C), d(V,B), d(U, L) काढा.
संक्षेप में उत्तर
योग

उत्तर

(i) बिंदू B आणि C चे निर्देशक अनुक्रमे 2 आणि 4 आहेत.

आपण जाणतो की 4 > 2

∴ d(B, C) = 4 − 2

∴ d(B, C) = 2

बिंदू B आणि A चे निर्देशक अनुक्रमे 2 आणि 0 आहेत.

आपण जाणतो की 2 > 0

∴ d(B, A) = 2 − 0

∴ d(B, A) = 2

चूंकि d(B, A) = d(B, C), म्हणून बिंदू A आणि C हे बिंदू B पासून समान अंतरावर आहेत.

बिंदू B आणि D चे निर्देशक अनुक्रमे 2 आणि 6 आहेत.

आपण जाणतो की 6 > 2

∴ d(B, D) = 6 − 2

∴ d(B, D) = 4

बिंदू B आणि P चे निर्देशक अनुक्रमे 2 आणि -2 आहेत.

आपण जाणतो की 2 > -2.

∴ d(B, P) = 2 − (−2)

∴ d(B, P) = 2 + 2

∴ d(B, P) = 4

चूंकि d(B, D) = d(B, P), म्हणून बिंदू D आणि P हे बिंदू B पासून समान अंतरावर आहेत.

(ii) बिंदू Q आणि U चे निर्देशक अनुक्रमे -4 आणि -5 आहेत.

आपण जाणतो की -4 > -5 

म्हणून, d(Q, U) = -4 - (-5)

∴ d(Q, U) = -4 + 5

∴ d(Q, U) = 1

बिंदू Q आणि L चे निर्देशक अनुक्रमे -4 आणि -3 आहेत.

आपण जाणतो की -3 > -4

म्हणून, d(Q, L) = -3 - (-4)

∴ d(Q, L) = -3 + 4

∴ d(Q, L) = 1

d(Q, U) = d(Q, L) असल्याने, बिंदू U आणि L हे बिंदू Q पासून समान अंतरावर आहेत.

बिंदू Q आणि R चे निर्देशक अनुक्रमे -4 आणि -6 आहेत.

आपण जाणतो की -4 > -6 

म्हणून, d(Q, R) = -4 - (-6)

∴ d(Q, R) = -4 + 6

∴ d(Q, R) = 2

बिंदू Q आणि P चे निर्देशक अनुक्रमे -4 आणि -2 आहेत.

-2 > -4 हे आपल्याला माहीत आहे.

म्हणून, d(Q, P) = -2 - (-4)

∴ d(Q, P) = -2 + 4

∴ d(Q, P) = 2

d(Q, R) = d(Q, P) असल्याने, बिंदू R आणि P हे बिंदू Q पासून समान अंतरावर आहेत.

(iii) बिंदू U आणि V चे निर्देशक अनुक्रमे -5 आणि 5 आहेत.

आपण जाणतो की 5 > -5

म्हणून, d(U, V) = 5 - (-5)

∴ d(U, V) = 5 + 5

∴ d(U, V) = 10

बिंदू P आणि C चे निर्देशक अनुक्रमे -2 आणि 4 आहेत.

आपण जाणतो की 4 > -2

म्हणून, d(P, C) = 4 - (-2)

∴ d(P, C) = 4 + 2

∴ d(P, C) = 6

बिंदू V आणि B चे निर्देशक अनुक्रमे 5 आणि 2 आहेत.

आपण जाणतो की 5 > 2

म्हणून, d(V, B) = 5 - 2

∴ d(V, B) = 3

बिंदू U आणि L चे निर्देशक अनुक्रमे -5 आणि -3 आहेत.

आपण जाणतो की -3 > -5

म्हणून, d(U, L) = -3 - (-5)

∴ d(U, L) = -3 + 5

∴ d(U, L) = 2

shaalaa.com
रेषाखंड
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: भूमितीतील मूलभूत संबोध - सरावसंच 1.2 [पृष्ठ ८]

APPEARS IN

बालभारती Geometry (Mathematics 2) [Marathi] 9 Standard Maharashtra State Board
अध्याय 1 भूमितीतील मूलभूत संबोध
सरावसंच 1.2 | Q 6. | पृष्ठ ८

संबंधित प्रश्न

खालील सारणीत संख्यारेषेवरील बिंदूंचे निर्देशक दिले आहेत. त्यावरून पुढील रेषाखंड एकरूप आहेत का ते ठरवा.

बिंदू A B C D E
निर्देशक -3 5 2 -7 9

रेख DE व रेख AB


खालील सारणीत संख्यारेषेवरील बिंदूंचे निर्देशक दिले आहेत. त्यावरून पुढील रेषाखंड एकरूप आहेत का ते ठरवा.

बिंदू A B C D E
निर्देशक -3 5 2 -7 9

रेख BC व रेख AD


खालील सारणीत संख्यारेषेवरील बिंदूंचे निर्देशक दिले आहेत. त्यावरून पुढील रेषाखंड एकरूप आहेत का ते ठरवा.

बिंदू A B C D E
निर्देशक -3 5 2 -7 9

रेख BE व रेख AD


बिंदू M हा रेख AB चा मध्यबिंदू आहे आणि AB = 8 तर AM = किती?


बिंदू P हा रेख CD चा मध्यबिंदू आहे आणि CP = 2.5 तर रेख CD ची लांबी काढा.


जर AB = 5 सेमी, BP = 2 सेमी आणि AP = 3.4 सेमी तर या रेषाखंडांचा लहान-मोठेपणा ठरवा.


आकृतीच्या आधारे खालील प्रश्नांची उत्तरे लिहा.

  1. किरण RP च्या विरुद्ध किरणाचे नाव लिहा.
  2. किरण PQ व किरण RP यांचा छेदसंच लिहा.
  3. रेख PQ व रेख QR चा संयोग संच लिहा.
  4. रेख QR हा कोणकोणत्या किरणांचा उपसंच आहे ?
  5. R हा आरंभबिंदू असलेल्या विरूद्ध किरणांची जोडी लिहा.
  6. S हा आरंभबिंदू असलेले कोणतेही दोन किरण लिहा.
  7. किरण SP आणि किरण ST यांचा छेदसंच लिहा.

प्रत्येक रेषाखंडाला किती मध्यबिंदू असतात?


दोन भिन्न रेषा परस्परांना छेदतात तेव्हा त्यांच्या छेदसंचात किती बिंदू असतात ?


तीन भिन्न बिंदूंना समाविष्ट करणाऱ्या किती रेषा असतात ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.