हिंदी

किसी 1 cm भुजा वाले घन का आयतन______m3 के बराबर है। - Physics (भौतिक विज्ञान)

Advertisements
Advertisements

प्रश्न

किसी 1 cm भुजा वाले घन का आयतन______m3 के बराबर है।

रिक्त स्थान भरें

उत्तर

किसी 1 cm भुजा वाले घन का आयतन 10–6 m3 के बराबर है।

स्पष्टीकरण:

1 cm  = `1/100m`

घन का आयतन = ( भुजा)3 =(1 cm)3

लेकिन, 1 cm3 = 1 cm × 1 cm × 1 cm = `(1/100)mxx(1/100)mxx(1/100)m`

∴ 1 cm3 = 10–6 m3

∴ किसी 1 cm भुजा वाले घन का आयतन 10–6 m3 के बराबर है।

shaalaa.com
मात्रकों की अंतर्राष्ट्रीय प्रणाली
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: मात्रक और मापन - अभ्यास [पृष्ठ ३५]

APPEARS IN

एनसीईआरटी Physics [Hindi] Class 11
अध्याय 2 मात्रक और मापन
अभ्यास | Q 2.1 (a) | पृष्ठ ३५

संबंधित प्रश्न

किसी 2 cm त्रिज्या व 10 cm ऊंचाई वाले सिलिंडर का पृष्ठ क्षेत्रफल ______(mm)बराबर है।


कोई गाड़ी 18 km/h की चाल से चल रही है तो यह 1s में ______m चलती है।


रिक्‍त स्थान को मात्रकॉं के उचित परिर्वतन द्वारा भरिए.

`1  "kg"  "m"^2  "s"^-2` = ______ `"g"  "cm"^2  "s"^-2`


रिक्‍त स्थान को मात्रकॉं के उचित परिर्वतन द्वारा भरिए.

1 m =______ ly


रिक्‍त स्थान को मात्रकॉं के उचित परिर्वतन द्वारा भरिए.

`3.0  "m""s"^-2` = ______`"km""h"^-2`


रिक्‍त स्थान को मात्रकॉं के उचित परिर्वतन द्वारा भरिए.

G = 6.67 x 10-11 Nm2 (kg)-2 =______ (cm)3 s-2 g-1  


इस कथन की स्पष्ट व्याख्या कीजिए : तुलना के मानक का विशेष उल्लेख किए बिना “किसी विमीय राशि को 'बड़ा' या 'छोटा' कहना अर्थहीन है।” इसे ध्यान में रखते हुए नीचे दिए गए कथनों को जहाँ कहीं भी आवश्यक हो, दूसरे शब्दों में व्यक्त कीजिए:

  1. परमाणु बहुत छोटे पिण्ड होते हैं।
  2. जेट वायुयान अत्यधिक गति से चलता है।
  3. बृहस्पति का द्रव्यमान बहुत ही अधिक है।
  4. इस कमरे के अंदर वायु में अणुओं की संख्या बहुत अधिक है।
  5. इलेक्ट्रॉन, प्रोटॉन से बहुत भारी होता है।
  6. ध्वनि की गति प्रकाश की गति से बहुत ही कम होती है।

लंबाई का कोई ऐसा नया मात्रक चुना गया है जिसके अनुसार निर्वात में प्रकाश की चाल 1 है। लंबाई के नए मात्रक के पदों में सूर्य तथा पृथ्वी के बीच की दूरी कितनी है, प्रकाश इस दूरी को तय करने में 8 min और 20 s लगाता है।


भौतिकी का एक प्रसिद्ध संबंध किसी कण के चल द्रव्यमान (moving mass) m, 'विराम द्रव्यमान (rest mass) m0', इसकी चाल ν और प्रकाश c की चाल के बीच है। (यह संबंध सबसे पहले अल्बर्ट आईंस्टाइन के विशेष आपेक्षिकता के सिद्धांत के परिणामस्वरूप उत्पन्न हुआ था।) कोई छात्र इस संबंध को लगभग सही याद करता है। लेकिन स्थिरांक c को लगाना भूल जाता है। वह लिखता है: 

`"m" = "m"_0/(1-"v"^2)^(1/2)`।

अनुमान लगाइए कि c कहाँ लगेगा?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×