हिंदी

किसी बिंदु P से, जो त्रिज्या 5 cm वाले एक वृत्त के केंद्र O से 13 cm की दूरी पर है, वृत्त पर दो स्पर्श रेखाएँ PQ और PR खींची गई हैं। तब चतुर्भुज PQOR का क्षेत्रफल ______ है। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

किसी बिंदु P से, जो त्रिज्या 5 cm वाले एक वृत्त के केंद्र O से 13 cm की दूरी पर है, वृत्त पर दो स्पर्श रेखाएँ PQ और PR खींची गई हैं। तब चतुर्भुज PQOR का क्षेत्रफल ______ है।

विकल्प

  • 60 cm

  • 65 cm

  • 30 cm

  • 32.5 cm

MCQ
रिक्त स्थान भरें

उत्तर

किसी बिंदु P से, जो त्रिज्या 5 cm वाले एक वृत्त के केंद्र O से 13 cm की दूरी पर है, वृत्त पर दो स्पर्श रेखाएँ PQ और PR खींची गई हैं। तब चतुर्भुज PQOR का क्षेत्रफल 60 cm2 है।

स्पष्टीकरण:

सबसे पहले, केंद्र O के साथ 5 सेमी त्रिज्या का एक वृत्त बनाएं।

P, O से 13 सेमी की दूरी पर एक बिंदु है।

स्पर्श रेखाओं PQ और PR का एक युग्म खींचा गया है।

इस प्रकार, चतुर्भुज PQOR बनता है।

∵ OQ ⊥ QP  ...[चूँकि, QP एक स्पर्श रेखा है।]

समकोण ∆PQO में,

OP2 = OQ2 + QP2

⇒ 132 = 52 + QP2

⇒ QP2 = 169 – 25 = 144

⇒ QP = 12 cm

अब, ∆OQP का क्षेत्रफल

= `1/2 xx "QP" xx "QO"`

= `1/2 xx 12 xx 5`

= 30 cm2

∴ चतुर्भुज PQOR का क्षेत्रफल

= 2 × ar ∆OQP

= 2 × 30

= 60 cm2

shaalaa.com
भूमिका: वृत्त
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: वृत्त - प्रश्नावली 9.1 [पृष्ठ १०५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
अध्याय 9 वृत्त
प्रश्नावली 9.1 | Q 4. | पृष्ठ १०५

संबंधित प्रश्न

किसी वृत की स्पर्श रेखा उसे _____ बिन्दुओं पर प्रतिच्छेद करती है।


वृत्त को दो बिन्दुओं पर प्रतिच्छेद करने वाली रेखा को _____ कहते हैं।


वृत्त तथा उसकी स्पर्श रेखा के उभयनिष्ठ बिन्दु को _______ कहते हैं।


5 सेमी त्रिज्या वाले एक वृत्त के बिन्दु P पर स्पर्श रेखा PQ केन्द्र O से जाने वाली एक रेखा से बिन्दु Q पर इस प्रकार मिलती है कि OQ = 12 सेमी। PQ की लम्बाई है।


एक वृत्त खींचिए और दो एक दी गई रेखा के समांतर दो ऐसी रेखाएँ खींचिए कि उनमें से एक स्पर्श रेखा हो तथा दूसरी छेदक रेखा हो।


आकृति में, AB एक वृत्त की जीवा है तथा AOC वृत्त का व्यास इस प्रकार है कि ∠ACB = 50° है। यदि AT बिंदु A पर वृत्त की स्पर्श रेखा है, तो ∠BAT बराबर ______ है।


यदि एक जीवा AB वृत्त के केंद्र पर 60° का कोण अंतरित करती (बनाती) है, तो A और B पर खींची गई स्पर्श रेखाओं के बीच का कोण भी 60° होगा।


किसी बाहरी बिंदु से एक वृत्त पर खींची गई स्पर्श रेखा की लंबाई सदैव उसकी त्रिज्या से बड़ी होती है।


यदि किसी बिंदु P से त्रिज्या a और केंद्र O वाले वृत्त पर खींची गई स्पर्श रेखाओं के बीच का कोण 60° है, तो OP = `asqrt(3)` होता है।


AB एक वृत्त का व्यास है और AC उसकी एक जीवा इस प्रकार है कि ∠BAC = 30° है। यदि C पर खींची गई स्पर्श रेखा बढ़ाई गई AB से D पर मिलती है, तो BC = BD होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×