Advertisements
Advertisements
प्रश्न
Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Give a function from A → B of the following:
neither one-to-one nor onto
उत्तर
f = {(1, b), (2, c), (3, d), (4, d)}
f is a function, it not one to one and not onto.
APPEARS IN
संबंधित प्रश्न
Suppose that 120 students are studying in 4 sections of eleventh standard in a school. Let A denote the set of students and B denote the set of the sections. Define a relation from A to B as “x related to y if the student x belongs to the section y”. Is this relation a function? What can you say about the inverse relation? Explain your answer
Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Give a function from A → B of the following:
not one-to-one but onto
Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Give a function from A → B of the following:
one-to-one but not onto
Find the domain of `1/(1 - 2sinx)`
Find the largest possible domain of the real valued function f(x) = `sqrt(4 - x^2)/sqrt(x^2 - 9)`
Find the range of the function `1/(2 cos x - 1)`
Show that the relation xy = −2 is a function for a suitable domain. Find the domain and the range of the function
If f, g, h are real valued functions defined on R, then prove that (f + g) o h = f o h + g o h. What can you say about f o (g + h)? Justify your answer
If f : R → R is defined by f(x) = 3x − 5, prove that f is a bijection and find its inverse
The weight of the muscles of a man is a function of his body weight x and can be expressed as W(x) = 0.35x. Determine the domain of this function
The distance of an object falling is a function of time t and can be expressed as s(t) = −16t2. Graph the function and determine if it is one-to-one.
The owner of a small restaurant can prepare a particular meal at a cost of Rupees 100. He estimates that if the menu price of the meal is x rupees, then the number of customers who will order that meal at that price in an evening is given by the function D(x) = 200 − x. Express his day revenue, total cost and profit on this meal as functions of x
Choose the correct alternative:
If f(x) = |x − 2| + |x + 2|, x ∈ R, then
Choose the correct alternative:
The range of the function `1/(1 - 2 sin x)` is
Choose the correct alternative:
The range of the function f(x) = |[x] − x|, x ∈ R is
Choose the correct alternative:
The function f : [0, 2π] → [−1, 1] defined by f(x) = sin x is
Choose the correct alternative:
The function f : R → R is defined by f(x) = sin x + cos x is