हिंदी

Let a, b, c, d be in arithmetic progression with common difference λ. If |x+a-cx+bx+ax-1x+cx+bx-b+dx+dx+c| = 2, then value of λ2 is equal to ______. -

Advertisements
Advertisements

प्रश्न

Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to ______.

विकल्प

  • 0

  • 1

  • 2

  • 3

MCQ
रिक्त स्थान भरें

उत्तर

Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to 1.

Explanation:

`|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2

Given, a, b, c and d are in AP

(b – a) = (c – b) = (d – c)

⇒ a + c = 2b, b + d = 2c

C2→C2 – C3

⇒ `|(x - 2λ, λ, x + a),(x - 1, λ, x + b),(x + 2λ, λ, x + c)|` = 2

R2→R2 – R1, R3→R3 – R1

⇒ `|(x - 2λ, λ, x + a),(2λ - 1, 0, λ),(4λ, 0, 2λ)|` = 2

⇒ –λ((2λ – 1)2λ – 4λ2) = 2

⇒ 2λ2 = 2

λ2 = 1

shaalaa.com
Determinants
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×