Advertisements
Advertisements
Question
Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to ______.
Options
0
1
2
3
Solution
Let a, b, c, d be in arithmetic progression with common difference λ. If `|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2, then value of λ2 is equal to 1.
Explanation:
`|(x + a - c, x + b, x + a),(x - 1, x + c, x + b),(x - b + d, x + d, x + c)|` = 2
Given, a, b, c and d are in AP
(b – a) = (c – b) = (d – c)
⇒ a + c = 2b, b + d = 2c
C2→C2 – C3
⇒ `|(x - 2λ, λ, x + a),(x - 1, λ, x + b),(x + 2λ, λ, x + c)|` = 2
R2→R2 – R1, R3→R3 – R1
⇒ `|(x - 2λ, λ, x + a),(2λ - 1, 0, λ),(4λ, 0, 2λ)|` = 2
⇒ –λ((2λ – 1)2λ – 4λ2) = 2
⇒ 2λ2 = 2
λ2 = 1