हिंदी

Let {an}n=0∞ be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, ∑n=2∞an7n is equal to ______. -

Advertisements
Advertisements

प्रश्न

Let {an}n=0 be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, n=2an7n is equal to ______.

विकल्प

  • 6343

  • 7216

  • 8343

  • 49216

MCQ
रिक्त स्थान भरें

उत्तर

Let {an}n=0 be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, n=2an7n is equal to 7216̲.

Explanation:

Given, a0 = a1 = 0 and an+2 = 2an+1 – an + 1 ∀ n ≥ 0

⇒ a2 = 2a0 – a0 + 1 = 1

and a3 = 2a2 – a1 + 1 = 3

and a4 = 2a3 – a2 + 1 = 6

And a5 = 2a4 – a3 + 1 = 10

∴ an = n(n-1)2

Let p = n=2an7n

⇒ p = n=2n(n-1)2.7n

⇒ p = 172+373+674+1075+...... ....(i)

p7=173+374+675+1076+......  ....(ii)

Equation (i) – equation (ii), we get

6p7=172+273+374+475+...... ....(iii)

6p72=173+274+375+476+...... ...(iv)

Equation (iii) – equation (iv), we get

6p7.(1-17)=172+173+174+175+......

6p7(67)=1721-17

(67)2p=1(7)(6)

⇒ p = 7216

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.