Advertisements
Advertisements
प्रश्न
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
पर्याय
`6/343`
`7/216`
`8/343`
`49/216`
उत्तर
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to `underlinebb(7/216)`.
Explanation:
Given, a0 = a1 = 0 and an+2 = 2an+1 – an + 1 ∀ n ≥ 0
⇒ a2 = 2a0 – a0 + 1 = 1
and a3 = 2a2 – a1 + 1 = 3
and a4 = 2a3 – a2 + 1 = 6
And a5 = 2a4 – a3 + 1 = 10
∴ an = `(n(n - 1))/2`
Let p = `sum_(n = 2)^∞ a^n/7^n`
⇒ p = `sum_(n = 2)^∞ (n(n - 1))/2.7^n`
⇒ p = `1/7^2 + 3/7^3 + 6/7^4 + 10/7^5 + ......` ....(i)
⇒ `p/7 = 1/7^3 + 3/7^4 + 6/7^5 + 10/7^6 + ......` ....(ii)
Equation (i) – equation (ii), we get
`(6p)/7 = 1/7^2 + 2/7^3 + 3/7^4 + 4/7^5 + ......` ....(iii)
⇒ `(6p)/7^2 = 1/7^3 + 2/7^4 + 3/7^5 + 4/7^6 + ......` ...(iv)
Equation (iii) – equation (iv), we get
`(6p)/7.(1 - 1/7) = 1/7^2 + 1/7^3 + 1/7^4 + 1/7^5 + ......`
⇒ `(6p)/7(6/7) = (1/7^2)/(1 - 1/7)`
⇒ `(6/7)^2p = 1/((7)(6))`
⇒ p = `7/216`