हिंदी

Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2]. Let R1 = ∫-12xf(x)dx and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 -

Advertisements
Advertisements

प्रश्न

Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].

Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______

विकल्प

  • R1 = 2R2

  • R1 = 3R2

  • 2R1 = R2

  • 3R1 = R2

MCQ
रिक्त स्थान भरें

उत्तर

Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].

Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, 2R1 = R2

Explanation:

`R_1 = int_-1^2 x f(x) dx`

= `int_-1^2(1 - x)f(1 - x)dx` .............`[∵ int_a^b f(x)dx = int_a^bf(a + b - x)dx]`

= `int_-1^2(1 - x) f(x) dx` ............[∵ f(x) = f(1 - x)(given)]

∴ `R_1 = int_-1^2 f(x) dx - R_1 ⇒ 2R_1 = int_-1^2 f(x) dx`

According to the given condition, 

`R_2 = int_-1^2 f(x) dx`

∴ R2 = 2R1

shaalaa.com
Continuous and Discontinuous Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×