Advertisements
Advertisements
प्रश्न
Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].
Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, ______
पर्याय
R1 = 2R2
R1 = 3R2
2R1 = R2
3R1 = R2
उत्तर
Let f : [-1, 2] → [0, ∞] be a continuous function such that f(x) = f(1 - x) ∀ x ∈ [-1, 2].
Let R1 = `int_-1^2 xf(x) dx` and R2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the X-axis. Then, 2R1 = R2
Explanation:
`R_1 = int_-1^2 x f(x) dx`
= `int_-1^2(1 - x)f(1 - x)dx` .............`[∵ int_a^b f(x)dx = int_a^bf(a + b - x)dx]`
= `int_-1^2(1 - x) f(x) dx` ............[∵ f(x) = f(1 - x)(given)]
∴ `R_1 = int_-1^2 f(x) dx - R_1 ⇒ 2R_1 = int_-1^2 f(x) dx`
According to the given condition,
`R_2 = int_-1^2 f(x) dx`
∴ R2 = 2R1