हिंदी

Let O(0, 0) and A(0, 1) be two fixed points. Then the locus of a point P such that the perimeter of ΔAOP is 4, is ______. -

Advertisements
Advertisements

प्रश्न

Let O(0, 0) and A(0, 1) be two fixed points. Then the locus of a point P such that the perimeter of ΔAOP is 4, is ______.

विकल्प

  • 9x2 – 8y2 + 8y = 16

  • 8x2 – 9y2 + 9y = 18

  • 9x2 + 8y2 – 8y = 16

  • 8x2 + 9y2 – 9y = 18

MCQ
रिक्त स्थान भरें

उत्तर

Let O(0, 0) and A(0, 1) be two fixed points. Then the locus of a point P such that the perimeter of ΔAOP is 4, is `underlinebb(9x^2 + 8"y"^2 - 8"y" = 16)`.

Explanation:


`1 + sqrt(("h" - 0)^2 + ("k" - 0)^2) + sqrt(("h" - 0)^2 + ("k" - 1)^2` = 4

`sqrt("h"^2 + ("k" - 1)^2) = 3 - sqrt("h"^2 + "k"^2)`

Squaring both the sides,

h2 + k2 – 2k + 1 = `9 + "h"^2 + "k"^2 - 6sqrt("h"^2 + "k"^2)`

⇒ –2k – 8 = `-6sqrt("h"^2 + "k"^2)`

⇒ k + 4 = `3sqrt("h"^2 + "k"^3)`

Squaring both the sides,

k2 + 16 + 8k = 9h2 + 9k2

9h2 + 8k2 – 8k – 16 = 0

Thus 9x2 + 8y2 – 8y – 16 = 0

shaalaa.com
Locus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×