Advertisements
Advertisements
प्रश्न
Let O(0, 0) and A(0, 1) be two fixed points. Then the locus of a point P such that the perimeter of ΔAOP is 4, is ______.
पर्याय
9x2 – 8y2 + 8y = 16
8x2 – 9y2 + 9y = 18
9x2 + 8y2 – 8y = 16
8x2 + 9y2 – 9y = 18
MCQ
रिकाम्या जागा भरा
उत्तर
Let O(0, 0) and A(0, 1) be two fixed points. Then the locus of a point P such that the perimeter of ΔAOP is 4, is `underlinebb(9x^2 + 8"y"^2 - 8"y" = 16)`.
Explanation:
`1 + sqrt(("h" - 0)^2 + ("k" - 0)^2) + sqrt(("h" - 0)^2 + ("k" - 1)^2` = 4
`sqrt("h"^2 + ("k" - 1)^2) = 3 - sqrt("h"^2 + "k"^2)`
Squaring both the sides,
h2 + k2 – 2k + 1 = `9 + "h"^2 + "k"^2 - 6sqrt("h"^2 + "k"^2)`
⇒ –2k – 8 = `-6sqrt("h"^2 + "k"^2)`
⇒ k + 4 = `3sqrt("h"^2 + "k"^3)`
Squaring both the sides,
k2 + 16 + 8k = 9h2 + 9k2
9h2 + 8k2 – 8k – 16 = 0
Thus 9x2 + 8y2 – 8y – 16 = 0
shaalaa.com
Locus
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?