हिंदी

Let R Be a Relation on N Defined by X + 2y = 8. the Domain of R is (A) [2, 4, 8] (B) [2, 4, 6, 8] (C) [2, 4, 6] (D) [1, 2, 3, 4] - Mathematics

Advertisements
Advertisements

प्रश्न

Let R be a relation on N defined by x + 2y = 8. The domain of R is

विकल्प

  • (a) [2, 4, 8]

  • (b) [2, 4, 6, 8]

  • (c) [2, 4, 6]

  • (d) [1, 2, 3, 4]

     
MCQ

उत्तर

(c) {2, 4, 6}

x + 2y = 8
 x = 8 -2y
For y = 1, x = 6
y = 2, x = 4
y = 3, x = 2
Then R = {(2,3),(4,2),(6,1)}
∴ Domain of R = {2,4,6}

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Relations - Exercise 2.5 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 2 Relations
Exercise 2.5 | Q 8 | पृष्ठ २६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let R be the relation on Z defined by R = {(a, b): a, b ∈ Z, a – b is an integer}. Find the domain and range of R.


The relation f is defined by f(x) = `{(x^2,0<=x<=3),(3x,3<=x<=10):}`

The relation g is defined by  g(x) = `{(x^2, 0 <= x <= 2),(3x,2<= x <= 10):}`

Show that f is a function and g is not a function.


Let A = [1, 2, 3, 4, 5, 6]. Let R be a relation on A defined by {(ab) : ab ∈ A, b is exactly divisible by a}

(i) Writer R in roster form
(ii) Find the domain of R
(ii) Find the range of R. 


If R is a relation defined on the set Z of integers by the rule (xy) ∈ R ⇔ x2 + y2 = 9, then write domain of R.


If R is a relation from set A = (11, 12, 13) to set B = (8, 10, 12) defined by y = x − 3, then write R−1.

 


If A = [1, 3, 5] and B = [2, 4], list of elements of R, if
R = {(xy) : xy ∈ A × B and x > y}


If R = [(xy) : xy ∈ W, 2x + y = 8], then write the domain and range of R.


A relation ϕ from C to R is defined by x ϕ y ⇔ |x| = y. Which one is correct?

 

If R is a relation from a finite set A having m elements of a finite set B having n elements, then the number of relations from A to B is


If R is a relation on a finite set having n elements, then the number of relations on A is


If P = {1, 2, 3) and Q = {1, 4}, find sets P × Q and Q × P


Let A = {1, 2, 3, 4), B = {4, 5, 6}, C = {5, 6}. Verify, A × (B ∪ C) = (A × B) ∪ (A × C)


Write the relation in the Roster Form. State its domain and range

R2 = `{("a", 1/"a") // 0 < "a" ≤ 5, "a" ∈ "N"}`


Write the relation in the Roster Form. State its domain and range

R5 = {(x, y)/x + y = 3, x, y∈ {0, 1, 2, 3}


Write the relation in the Roster Form. State its domain and range

R8 = {(a, b)/b = a + 2, a ∈ z, 0 < a < 5}


Answer the following:

If A = {1, 2, 3}, B = {4, 5, 6} check if the following are relations from A to B. Also write its domain and range

R2 = {(1, 5), (2, 4), (3, 6)}


Answer the following:

Determine the domain and range of the following relation.

R = {(a, b)/a ∈ N, a < 5, b = 4}


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is reflexive


Answer the following:

R = {1, 2, 3} → {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 3)} Check if R is transitive


Answer the following:

Show that the following is an equivalence relation

R in A is set of all books. given by R = {(x, y)/x and y have same number of pages}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R1 = {(2, 1), (7, 1)}


Let A = {1, 2, 3, 7} and B = {3, 0, –1, 7}, the following is relation from A to B?

R2 = {(–1, 1)}


Multiple Choice Question :

The range of the relation R = {(x, x2) | x is a prime number less than 13} is ________


Discuss the following relation for reflexivity, symmetricity and transitivity:

Let A be the set consisting of all the members of a family. The relation R defined by “aRb if a is not a sister of b”


Let X = {a, b, c, d} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it reflexive


Let A = {a, b, c} and R = {(a, a), (b, b), (a, c)}. Write down the minimum number of ordered pairs to be included to R to make it equivalence


Prove that the relation “friendship” is not an equivalence relation on the set of all people in Chennai


Choose the correct alternative:

Let X = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (2, 1), (3, 1), (1, 4), (4, 1)}. Then R is


Choose the correct alternative:

Let f : R → R be defined by f(x) = 1 − |x|. Then the range of f is


Find the domain and range of the relation R given by R = {(x, y) : y = `x + 6/x`; where x, y ∈ N and x < 6}.


Is the following relation a function? Justify your answer

R1 = `{(2, 3), (1/2, 0), (2, 7), (-4, 6)}`


If R1 = {(x, y) | y = 2x + 7, where x ∈ R and – 5 ≤ x ≤ 5} is a relation. Then find the domain and Range of R1.


If R2 = {(x, y) | x and y are integers and x2 + y2 = 64} is a relation. Then find R2.


Is the given relation a function? Give reasons for your answer.

f = {(x, x) | x is a real number}


Let N denote the set of all natural numbers. Define two binary relations on N as R1 = {(x, y) ∈ N × N : 2x + y = 10} and R2 = {(x, y) ∈ N × N : x + 2y = 10}. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×