Advertisements
Advertisements
प्रश्न
\[\lim_{x \to - 1/2} \frac{8 x^3 + 1}{2x + 1}\]
उत्तर
\[\lim_{x \to - \frac{1}{2}} \left[ \frac{8 x^3 + 1}{2x + 1} \right]\]
\[ = \lim_{x \to - \frac{1}{2}} \left[ \frac{\left( 2x \right)^3 - \left( - 1 \right)}{2x - \left( - 1 \right)} \right]\]
\[\text{ When } x \to - \frac{1}{2}, \text{ then } 2x \to -1 .\]
Let y = 2x
\[\lim_{y \to - 1} \left[ \frac{y^3 - \left( - 1 \right)^3}{y - \left( - 1 \right)} \right]\]
\[ = 3 \left( - 1 \right)^{3 - 1} \]
\[ = 3 \times \left( - 1 \right)^2 \]
\[ = 3\]
APPEARS IN
संबंधित प्रश्न
Find `lim_(x -> 5) f(x)`, where f(x) = |x| - 5
Show that \[\lim_{x \to 0} \frac{x}{\left| x \right|}\] does not exist.
\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]
\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\]
\[\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^2 - 3x - 4}\]
\[\lim_{x \to 3} \left( x^2 - 9 \right) \left[ \frac{1}{x + 3} + \frac{1}{x - 3} \right]\]
\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\]
\[\lim_{x \to a} \frac{x^{2/3} - a^{2/3}}{x^{3/4} - a^{3/4}}\]
\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\]
\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\]
\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\]
\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\]
\[\lim_{x \to 0} \frac{\sin 5x - \sin 3x}{\sin x}\]
\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\]
\[\lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1}\]
\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\]
\[\lim_{x \to a} \frac{\cos x - \cos a}{\sqrt{x} - \sqrt{a}}\]
\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]
\[\lim_{x \to 1} \left( 1 - x \right) \tan \left( \frac{\pi x}{2} \right)\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
\[\lim_{x \to \pi} \frac{1 + \cos x}{\tan^2 x}\]
\[\lim_{x \to 0} \frac{8^x - 2^x}{x}\]
Write the value of \[\lim_{x \to 1^-} x - \left[ x \right] .\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
\[\lim_{x \to \infty} \frac{\sin x}{x} .\]
Write the value of \[\lim_{x \to 2} \frac{\left| x - 2 \right|}{x - 2} .\]
\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\] is equal at
\[\lim 2_{h \to 0} \left\{ \frac{\sqrt{3} \sin \left( \pi/6 + h \right) - \cos \left( \pi/6 + h \right)}{\sqrt{3} h \left( \sqrt{3} \cos h - \sin h \right)} \right\}\]
\[\lim_{h \to 0} \left\{ \frac{1}{h\sqrt[3]{8 + h}} - \frac{1}{2h} \right\} =\]
If α is a repeated root of ax2 + bx + c = 0, then \[\lim_{x \to \alpha} \frac{\tan \left( a x^2 + bx + c \right)}{\left( x - \alpha \right)^2}\]
The value of \[\lim_{x \to \infty} \frac{\left( x + 1 \right)^{10} + \left( x + 2 \right)^{10} + . . . + \left( x + 100 \right)^{10}}{x^{10} + {10}^{10}}\] is
\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to
\[\lim_{x \to \infty} \frac{\left| x \right|}{x}\] is equal to
Evaluate: `lim_(x -> 1) ((1 + x)^6 - 1)/((1 + x)^2 - 1)`
Evaluate the following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the following limit:
`\underset{x->3}{lim}[sqrt(x +6)/(x)]`