Advertisements
Advertisements
प्रश्न
\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
उत्तर
\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
\[ = \lim_{h \to 0} \frac{\sqrt{5 + \cos \left( \pi - h \right)} - 2}{\left( \pi - \left( \pi - h \right) \right)^2}\]
\[ = \lim_{h \to 0} \frac{\sqrt{5 - \cos h} - 2}{h^2}\]
\[\text{ PRationalising the numerator, we get }: \]
\[ \lim_{h \to 0} \frac{\left( \sqrt{5 - \cos h} - 2 \right) \left( \sqrt{5 - \cos h} + 2 \right)}{h^2 \left( \sqrt{5 - \cos h} + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{5 - \cos h - 4}{h^2 \left( \sqrt{5 - \cos h} + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{1 - \cos h}{h^2 \left[ \sqrt{5 - \cos h} + 2 \right]}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{4\left( \frac{h^2}{4} \right) \left( \sqrt{5 - \cos h} + 2 \right)}\]
\[ = \frac{1}{2 \left( \sqrt{5 - 1} + 2 \right)}\]
\[ = \frac{1}{2\left( 4 \right)}\]
\[ = \frac{1}{8}\]
APPEARS IN
संबंधित प्रश्न
\[\lim_{x \to 3} \frac{\sqrt{2x + 3}}{x + 3}\]
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to 0} \frac{x^{2/3} - 9}{x - 27}\]
\[\lim_{x \to 2} \left( 3 - x \right)\]
\[\lim_{x \to 2} \frac{x^3 - 8}{x^2 - 4}\]
\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]
\[\lim_{x \to - 2} \frac{x^3 + x^2 + 4x + 12}{x^3 - 3x + 2}\]
\[\lim_{x \to 1} \left\{ \frac{x - 2}{x^2 - x} - \frac{1}{x^3 - 3 x^2 + 2x} \right\}\]
\[\lim_{x \to a} \frac{x^{2/7} - a^{2/7}}{x - a}\]
If \[\lim_{x \to a} \frac{x^3 - a^3}{x - a} = \lim_{x \to 1} \frac{x^4 - 1}{x - 1},\] find all possible values of a.
\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\]
\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\]
\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\]
\[\lim_{x \to 0} \frac{\sin 3x - \sin x}{\sin x}\]
\[\lim_{x \to 0} \frac{\sin 3x + 7x}{4x + \sin 2x}\]
\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]
Evaluate the following limit:
\[\lim_{x \to 0} \frac{\sin\left( \alpha + \beta \right)x + \sin\left( \alpha - \beta \right)x + \sin2\alpha x}{\cos^2 \beta x - \cos^2 \alpha x}\]
\[\lim_{x \to \pi} \frac{\sin x}{\pi - x}\]
\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\]
\[\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan x}{1 - \sqrt{2} \sin x}\]
\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]
\[\lim_{x \to 0} \left( \cos x + a \sin bx \right)^{1/x}\]
Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]
Write the value of \[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\]
\[\lim_{n \to \infty} \left\{ \frac{1}{1 - n^2} + \frac{2}{1 - n^2} + . . . + \frac{n}{1 - n^2} \right\}\]
\[\lim_{x \to 0} \frac{\sin x^0}{x}\]
\[\lim_{x \to a} \frac{x^n - a^n}{x - a}\] is equal at
\[\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1}\]
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
If \[f\left( x \right) = \left\{ \begin{array}{l}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0\end{array}, \right.\] then \[\lim_{x \to 0} f\left( x \right)\] equals
\[\lim_{x \to \pi/4} \frac{4\sqrt{2} - \left( \cos x + \sin x \right)^5}{1 - \sin 2x}\] is equal to
The value of \[\lim_{n \to \infty} \left\{ \frac{1 + 2 + 3 + . . . + n}{n + 2} - \frac{n}{2} \right\}\]
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^5 - 3125)]`
Evaluate the following limit.
`lim_(x->5)[(x^3 -125)/(x^5 - 3125)]`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`
Evaluate the following limit:
`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`