English

lim x → π √ 5 + cos x − 2 ( π − x ) 2 - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 

Solution

\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\]
\[ = \lim_{h \to 0} \frac{\sqrt{5 + \cos \left( \pi - h \right)} - 2}{\left( \pi - \left( \pi - h \right) \right)^2}\]
\[ = \lim_{h \to 0} \frac{\sqrt{5 - \cos h} - 2}{h^2}\]
\[\text{ PRationalising the numerator, we get }: \]
\[ \lim_{h \to 0} \frac{\left( \sqrt{5 - \cos h} - 2 \right) \left( \sqrt{5 - \cos h} + 2 \right)}{h^2 \left( \sqrt{5 - \cos h} + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{5 - \cos h - 4}{h^2 \left( \sqrt{5 - \cos h} + 2 \right)}\]
\[ = \lim_{h \to 0} \frac{1 - \cos h}{h^2 \left[ \sqrt{5 - \cos h} + 2 \right]}\]
\[ = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}}{4\left( \frac{h^2}{4} \right) \left( \sqrt{5 - \cos h} + 2 \right)}\]
\[ = \frac{1}{2 \left( \sqrt{5 - 1} + 2 \right)}\]
\[ = \frac{1}{2\left( 4 \right)}\]
\[ = \frac{1}{8}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.8 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.8 | Q 15 | Page 62

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}\] 


\[\lim_{x \to 1} \left( \frac{1}{x^2 + x - 2} - \frac{x}{x^3 - 1} \right)\] 


\[\lim_{x \to 0} \frac{\left( a + x \right)^2 - a^2}{x}\] 


\[\lim_{x \to 3} \frac{x^2 - x - 6}{x^3 - 3 x^2 + x - 3}\]


Evaluate the following limit:

\[\lim_{x \to 1} \frac{x^7 - 2 x^5 + 1}{x^3 - 3 x^2 + 2}\] 


\[\lim_{x \to \infty} \sqrt{x^2 + cx - x}\] 


\[\lim_{x \to \infty} \frac{x}{\sqrt{4 x^2 + 1} - 1}\] 


\[\lim_{n \to \infty} \left[ \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!} \right]\] 


\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\] 


\[\lim_{n \to \infty} \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\] 


Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\] 


\[\lim_{x \to 0} \frac{\cos 3x - \cos 7x}{x^2}\] 


\[\lim_\theta \to 0 \frac{\sin 3\theta}{\tan 2\theta}\] 


\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\] 


\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\] 


\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\] 


\[\lim_{x \to 0} \frac{1 - \cos 4x}{x^2}\] 


\[\lim_{x \to 0} \frac{cosec x - \cot x}{x}\]


\[\lim_{x \to 0} \frac{5x + 4 \sin 3x}{4 \sin 2x + 7x}\]


\[\lim_{x \to 0} \frac{3 \sin x - \sin 3x}{x^3}\]


\[\lim_{x \to \frac{\pi}{3}} \frac{\sqrt{3} - \tan x}{\pi - 3x}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\sqrt{\cos x} - \sqrt{\sin x}}{x - \frac{\pi}{4}}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{x \to \frac{\pi}{2}} \left( \frac{\pi}{2} - x \right) \tan x\]


\[\lim_{x \to \frac{\pi}{4}} \frac{2 - {cosec}^2 x}{1 - \cot x}\] 


\[\lim_{x \to 0} \frac{\log \left( a + x \right) - \log a}{x}\]


\[\lim_{x \to 0} \left( \cos x + \sin x \right)^{1/x}\]


Write the value of \[\lim_{x \to 0^-} \left[ x \right] .\]


Write the value of \[\lim_{x \to 0^+} \left[ x \right] .\]


Write the value of \[\lim_{x \to 0} \frac{\sin x^\circ}{x} .\]


\[\lim_{x \to \pi/4} \frac{\sqrt{2} \cos x - 1}{\cot x - 1}\] is equal to


\[\lim_{n \to \infty} \left\{ \frac{1}{1 . 3} + \frac{1}{3 . 5} + \frac{1}{5 . 7} + . . . + \frac{1}{\left( 2n + 1 \right) \left( 2n + 3 \right)} \right\}\]is equal to


The value of \[\lim_{n \to \infty} \frac{\left( n + 2 \right)! + \left( n + 1 \right)!}{\left( n + 2 \right)! - \left( n + 1 \right)!}\] is 


If \[f\left( x \right) = \begin{cases}\frac{\sin\left[ x \right]}{\left[ x \right]}, & \left[ x \right] \neq 0 \\ 0, & \left[ x \right] = 0\end{cases}\]  where  denotes the greatest integer function, then \[\lim_{x \to 0} f\left( x \right)\]  


Evaluate the following limit:

`lim_(x -> 7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limits: `lim_(y -> 1) [(2y - 2)/(root(3)(7 + y) - 2)]`


if `lim_(x -> 2) (x^"n"- 2^"n")/(x - 2)` = 80 then find the value of n.


If the value of `lim_(x -> 1) (1 - (1 - x))^"m"/x` is 99, then n = ______.


Evaluate the following limit:

`lim_(x->7)[((root(3)(x) - root(3)(7))(root(3)(x) + root(3)(7)))/(x - 7)]`


Evaluate the following limit.

`lim_(x->3)[sqrt(x + 6)/x]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×