Advertisements
Advertisements
Question
Evaluate: \[\lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\]
Solution
Consider the identity \[\left( k + 1 \right)^5 - k^5 = 5 k^4 + 10 k^3 + 10 k^2 + 5k + 1\]
Putting k = 1, 2, 3,..., n in (1) and then adding the equations, we have
\[\left( n + 1 \right)^5 - 1 = 5 \sum^n_{k = 1} k^4 + 10 \sum^n_{k = 1} k^3 + 10 \sum^n_{k = 1} k^2 + 5 \sum^n_{k = 1} k + \sum^n_{k = 1} 1\]
\[ \Rightarrow n^5 + 5 n^4 + 10 n^3 + 10 n^2 + 5n = 5 \sum^n_{k = 1} k^4 + \frac{10 n^2 \left( n + 1 \right)^2}{4} + \frac{10n\left( n + 1 \right)\left( 2n + 1 \right)}{6} + \frac{5n\left( n + 1 \right)}{2} + n\]
\[ \Rightarrow 5 \sum^n_{k = 1} k^4 = n^5 + 5 n^4 + 10 n^3 + 10 n^2 + 4n - \frac{5 n^2 \left( n + 1 \right)^2}{2} - \frac{5n\left( n + 1 \right)\left( 2n + 1 \right)}{3} - \frac{5n\left( n + 1 \right)}{2}\]
\[ \Rightarrow 5 \sum^n_{k = 1} k^4 = n^5 + \frac{5 n^4}{2} + \frac{5 n^3}{3} - \frac{n}{6}\]
This expression on further simplification gives \[\sum^n_{k = 1} k^4 = \frac{n\left( n + 1 \right)\left( 2n + 1 \right)\left( 3 n^2 + 3n - 1 \right)}{30}\]
\[\therefore \lim_{n \to \infty} \frac{1^4 + 2^4 + 3^4 + . . . + n^4}{n^5} - \lim_{n \to \infty} \frac{1^3 + 2^3 + . . . + n^3}{n^5}\]
\[ = \lim_{n \to \infty} \frac{n\left( n + 1 \right)\left( 2n + 1 \right)\left( 3 n^2 + 3n - 1 \right)}{30 n^5} - \lim_{n \to \infty} \frac{n^2 \left( n + 1 \right)^2}{4 n^5}\]
\[ = \frac{1}{30} \lim_{n \to \infty} \left( 1 + \frac{1}{n} \right)\left( 2 + \frac{1}{n} \right)\left( 3 + \frac{3}{n} - \frac{1}{n^2} \right) - \frac{1}{4} \lim_{n \to \infty} \frac{1}{n} \left( 1 + \frac{1}{n} \right)^2 \]
\[ = \frac{1}{30} \times \left( 1 + 0 \right) \times \left( 2 + 0 \right) \times \left( 3 + 0 - 0 \right) - \frac{1}{4} \times 0 \left( \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^2} = . . . = 0 \right)\]
\[= \frac{1}{30} \times 6 - 0\]
\[ = \frac{1}{5}\]
APPEARS IN
RELATED QUESTIONS
Suppose f(x) = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}` and if `lim_(x -> 1) f(x) = f(1)` what are possible values of a and b?
\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\]
\[\lim_{x \to a} \frac{\sqrt{x} + \sqrt{a}}{x + a}\]
\[\lim_{x \to 0} 9\]
\[\lim_{x \to \sqrt{3}} \frac{x^4 - 9}{x^2 + 4\sqrt{3}x - 15}\]
\[\lim_{x \to 1/4} \frac{4x - 1}{2\sqrt{x} - 1}\]
\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x - a}\]
\[\lim_{x \to \infty} \frac{\left( 3x - 1 \right) \left( 4x - 2 \right)}{\left( x + 8 \right) \left( x - 1 \right)}\]
\[\lim_{x \to \infty} \frac{3 x^{- 1} + 4 x^{- 2}}{5 x^{- 1} + 6 x^{- 2}}\]
\[\lim_{n \to \infty} \left[ \frac{1 + 2 + 3 . . . . . . n - 1}{n^2} \right]\]
\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\]
\[\lim_{n \to \infty} \left[ \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + . . . + \frac{1}{3^n} \right]\]
Evaluate: \[\lim_{n \to \infty} \frac{1 . 2 + 2 . 3 + 3 . 4 + . . . + n\left( n + 1 \right)}{n^3}\]
\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\]
\[\lim_{x \to 0} \frac{3 \sin x - 4 \sin^3 x}{x}\]
\[\lim_{x \to 0} \frac{\tan mx}{\tan nx}\]
\[\lim_{x \to 0} \frac{\sin 5x}{\tan 3x}\]
\[\lim_{x \to 0} \frac{3 \sin 2x + 2x}{3x + 2 \tan 3x}\]
\[\lim_{x \to 0} \frac{1 - \cos 2x + \tan^2 x}{x \sin x}\]
Evaluate the following limit:
\[\lim_{h \to 0} \frac{\left( a + h \right)^2 \sin\left( a + h \right) - a^2 \sin a}{h}\]
\[\lim_{x \to \pi} \frac{\sin x}{\pi - x}\]
\[\lim_{x \to \pi} \frac{\sqrt{2 + \cos x} - 1}{\left( \pi - x \right)^2}\]
\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]
\[\lim_{x \to \pi} \frac{\sin x}{x - \pi} .\]
\[\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x} .\]
If \[f\left( x \right) = x \sin \left( 1/x \right), x \neq 0,\] then \[\lim_{x \to 0} f\left( x \right) =\]
The value of \[\lim_{x \to \infty} \frac{\sqrt{1 + x^4} + \left( 1 + x^2 \right)}{x^2}\] is
\[\lim_{n \to \infty} \frac{n!}{\left( n + 1 \right)! + n!}\] is equal to
\[\lim_{x \to \infty} a^x \sin \left( \frac{b}{a^x} \right), a, b > 1\] is equal to
\[\lim_\theta \to \pi/2 \frac{1 - \sin \theta}{\left( \pi/2 - \theta \right) \cos \theta}\] is equal to
Evaluate the following limits: `lim_(x -> 0)[((1 - x)^8 - 1)/((1 - x)^2 - 1)]`
Evaluate the following limits: `lim_(x -> 5)[(x^3 - 125)/(x^2 - 25)]`
`lim_(x->3) (x^5 - 243)/(x^3 - 27)` = ?
If `lim_(x -> 1) (x^4 - 1)/(x - 1) = lim_(x -> k) (x^3 - l^3)/(x^2 - k^2)`, then find the value of k.
If f(x) = `{{:(1 if x "is rational"),(-1 if x "is rational"):}` is continuous on ______.
Evaluate the Following limit:
`lim_(x->7)[((root(3)(x)-root(3)(7))(root(3)(x)+root(3)(7)))/(x-7)]`
Evaluate the Following limit:
`lim_ (x -> 3) [sqrt (x + 6)/ x]`