English

Lim X → 0 + { 1 + Tan 2 √ X } 1 / 2 X - Mathematics

Advertisements
Advertisements

Question

\[\lim_{x \to 0^+} \left\{ 1 + \tan^2 \sqrt{x} \right\}^{1/2x}\]

Solution

\[\lim_{x \to 0^+} \left[ 1 + \tan^2 \sqrt{x} \right] {}^\frac{1}{2x} \]
\[\text{ Using the theorem given below }: \]
\[\text{ If } \lim_{x \to a} f\left( x \right) = \lim_{x \to a} g\left( x \right) = 0 \text{ such that } \lim_{x \to a} \frac{f\left( x \right)}{g\left( x \right)} \text{ exists, then } \lim_{x \to a} \left[ 1 + f\left( x \right) \right]^\frac{1}{g\left( x \right)} = e^\lim_{x \to a} \frac{f\left( x \right)}{g\left( x \right)} . \]
\[\text{ Here }: \]
\[ f\left( x \right) = \tan^2 \sqrt{x}\]
\[ g\left( x \right) = 2x\]
\[ \Rightarrow e^\lim_{x \to 0^+} \left( \frac{\tan^2 \sqrt{x}}{2x} \right) \]
\[ = e^\lim_{x \to 0^+} \left( \frac{\tan \sqrt{x}}{\sqrt{x}} \right) \times \left( \frac{\tan \sqrt{x}}{\sqrt{x}} \right) \times \frac{1}{2} \]
\[ = e^{1 \times 1 \times \frac{1}{2}} \]
\[ = \sqrt{e}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: Limits - Exercise 29.11 [Page 76]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 29 Limits
Exercise 29.11 | Q 2 | Page 76

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\lim_{x \to 1} \frac{\sqrt{x + 8}}{\sqrt{x}}\] 


\[\lim_{x \to 0} \frac{ax + b}{cx + d}, d \neq 0\]


\[\lim_{x \to 3} \frac{x^4 - 81}{x^2 - 9}\] 


\[\lim_{x \to 2} \frac{x^4 - 16}{x - 2}\] 


\[\lim_{x \to - 1} \frac{x^3 + 1}{x + 1}\] 


\[\lim_{x \to 3} \left( \frac{1}{x - 3} - \frac{3}{x^2 - 3x} \right)\] 


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{5/2} - \left( a + 2 \right)^{5/2}}{x - a}\] 


\[\lim_{x \to a} \frac{\left( x + 2 \right)^{3/2} - \left( a + 2 \right)^{3/2}}{x -  a}\]


\[\lim_{x \to 1} \frac{x^{15} - 1}{x^{10} - 1}\] 


If \[\lim_{x \to a} \frac{x^5 - a^5}{x - a} = 405,\]find all possible values of a

 

 


\[\lim_{x \to \infty} \sqrt{x^2 + 7x - x}\] 


\[\lim_{x \to \infty} \left[ \left\{ \sqrt{x + 1} - \sqrt{x} \right\} \sqrt{x + 2} \right]\] 


\[\lim_{n \to \infty} \left[ \frac{1^3 + 2^3 + . . . n^3}{\left( n - 1 \right)^4} \right]\] 


\[\lim_{x \to \infty} \left[ \sqrt{x}\left\{ \sqrt{x + 1} - \sqrt{x} \right\} \right]\] 


\[\lim_{x \to - \infty} \left( \sqrt{4 x^2 - 7x} + 2x \right)\] 


\[\lim_{x \to 0} \left[ \frac{x^2}{\sin x^2} \right]\] 


\[\lim_{x \to 0} \frac{\tan 8x}{\sin 2x}\] 


\[\lim_{x \to 0} \frac{\tan 3x - 2x}{3x - \sin^2 x}\] 


\[\lim_{x \to 0} \frac{x^3 \cot x}{1 - \cos x}\] 


\[\lim_{x \to 0} \frac{\sin \left( 3 + x \right) - \sin \left( 3 - x \right)}{x}\] 


\[\lim_{x \to 0} \frac{3 \sin^2 x - 2 \sin x^2}{3 x^2}\] 


\[\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}\]


Evaluate the following limits: 

\[\lim_{x \to 0} \frac{\cos ax - \cos bx}{\cos cx - 1}\] 


\[\lim_{x \to \frac{\pi}{2}} \frac{\sin 2x}{\cos x}\] 


\[\lim_{x \to \frac{\pi}{8}} \frac{\cot 4x - \cos 4x}{\left( \pi - 8x \right)^3}\] 


\[\lim_{x \to \pi} \frac{\sqrt{5 + \cos x} - 2}{\left( \pi - x \right)^2}\] 


\[\lim_{x \to a} \frac{\cos \sqrt{x} - \cos \sqrt{a}}{x - a}\] 


\[\lim_{x \to 1} \frac{1 - x^2}{\sin \pi x}\]


\[\lim_{n \to \infty} \frac{\sin \left( \frac{a}{2^n} \right)}{\sin \left( \frac{b}{2^n} \right)}\]


\[\lim_{x \to \frac{\pi}{4}} \frac{\cos x - \sin x}{\left( \frac{\pi}{4} - x \right) \left( \cos x + \sin x \right)}\]


\[\lim_{x \to 0^-} \frac{\sin \left[ x \right]}{\left[ x \right]} .\] 


\[\lim_{x \to \infty} \left\{ \frac{3 x^2 + 1}{4 x^2 - 1} \right\}^\frac{x^3}{1 + x}\]


\[\lim_{x \to \infty} \frac{\sin x}{x} .\] 


\[\lim_{n \to \infty} \frac{1 - 2 + 3 - 4 + 5 - 6 + . . . . + \left( 2n - 1 \right) - 2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}\] is equal to 


\[\lim_{x \to 1} \left[ x - 1 \right]\] where [.] is the greatest integer function, is equal to 


\[\lim_{x \to 0} \frac{\left| \sin x \right|}{x}\]


Evaluate the following limit:

`lim_(x->3)[(sqrt(x+6))/x]`


Evaluate the following limit:

`\underset{x->5}{lim}[(x^3 - 125)/(x^5 - 3125)]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×